功率MOSFET基本结构:超结结构

原创 松哥电源 2023-10-04 19:20

1、超级结构

高压功率MOSFET管早期主要为平面型结构,采用厚低掺杂的N-外延层epi,保证器件具有足够击穿电压,低掺杂N-外延层epi尺寸越厚,耐压额定值越大,但是,导通电阻随电压以2.4-2.6次方增长,导通电阻急剧增大,电流额定值降低。为了获得低导通电阻值,就必须增大硅片面积,需要更大晶片面积降低导通电阻,一些大电流应用需要更大封装尺寸,成本随之增加,Crss电容增加导致开关损耗增加,系统功率密度很难提高,应用受到很大限制。

高压功率MOSFET外延层对导通电阻起主导作用,要保证高压功率MOSFET管具有足够击穿电压,同时,降低导通电阻,最直观方法就是:

(1)在器件导通时,形成一个较高掺杂N区,作为功率MOSFET管导通的电流通路

(2)在器件关断时,去除较高掺杂N区的载流子,方法就是使用PN进行耗尽,保证要求耐压等级

按照上面原理,将平面结构的P-体区结构一直向下,直到几乎贯穿整个外延层,就可以实现上述要求。超结结构Super Junction高压功率MOSFET管就是基本这种设计思路,这种结构主要特点是几乎贯穿整个芯片厚度P柱和内建横向电场,这种结构在学术上称为超结结构。

(a)平面结构P区下移   (b)超结结构

1  内建横向电场超结结构

超结结构中,垂直导电N区夹在两边P柱中间,水平方向,N区和P柱二侧都形成PN结;垂直方向,P柱底部和下面外延epi层N形成PN结,栅极下面P区形成反型层产生导电沟道。功率MOSFET管关断时,P柱和垂直导电N形成PN结反向偏置,PN结二侧都会形成耗尽层,建立水平横向电场,这个电场为矩形电场。耗尽层增大,横向水平电场也增大。

随着外加反向偏置电压增大,垂直导电N区和P柱内耗尽层宽度不断增加,直到垂直导电N区和P柱整个区域基本上全部耗尽,几乎全部变成耗尽层,耗尽层横向矩形电场达到非常高幅值,具有非常高的纵向阻断电压。和平面结构对比,横向电场将外延层N-三角形电场变成梯形或矩形电场,提高器件耐压。因此,同样耐压可以减薄器件外延层N-厚度,降低导通电阻。此外,P柱底部与和它相接触外延层N-也形成PN结,反向偏置形时,产生耗尽层,形成垂直电场,进一步提高器件耐压。

图2  超结结构内部电场

MOSFET导通时,栅极和源极电场导致栅极氧化层下部P区反型,形成N型导电沟道;源极区电子通过导电沟道进入垂直N区,中和N区正电荷空穴,垂直N区耗尽层宽度不断降低,直到垂直N区恢复到初始状态。初始状态垂直N区掺杂浓度高,电阻率低,因此导电电流通路导通电阻低。

比较平面结构和沟槽结构功率MOSFET管,超结结构实际综合了平面型和沟槽型结构两者特点,在平面型结构中开出一个低阻抗电流通路沟槽,因此具有平面型结构高耐压和沟槽型结构低电阻特性。内建横向电场高压超结结构,克服了平面高压功率MOSFET管缺点,其工作频率高,导通损耗小,同样面积芯片,可以设计更低导通电阻,因此具有更大额定电流值。

超结结构高压功率MOSFET管需要制作贯穿整个芯片厚度P柱,生产工艺比较复杂,单元一致性较差,雪崩能量不容易控制;超结结构必须严格控制P柱区与外延层N区浓度和宽度,否则二侧不对称耗尽导致中间电荷不平衡,影响超结结构耐压。外延层N掺杂浓度越高,影响越大。

降低漂移区厚度,提高漂移区掺杂浓度,以及降低单元Pitch尺寸,可以进一步降低导通电阻。但是,降低单元Pitch尺寸,必须增加N漂移区掺杂浓度,就必须对N漂移区和P柱区进行精确补偿,必须非常严格控制它们掺杂浓度和宽度。耗尽电荷平衡偏差越大,电压阻断能力损失就越严重,器件雪崩能力和单元一致性越差,对生产工艺和技术要求就更加苛刻。

有些中压功率MOSFET管也采用超结技术,降低导通电阻,同时使用较大Pitch尺寸,减少单元相互之间加热效应和电流集中影响,不容易形成局部热点Hot Spot,提高线性区性能。中压功率MOSFET管超结技术,除了采用前面P柱超结结构,还可以使用深沟槽工艺的场板结构。深沟槽场板尺寸,贯穿芯片厚度大部分尺寸,并不完全贯穿芯片整个厚度,在沟槽表面制作氧化层,里面填充多晶硅,多晶硅连接到源极,氧化层隔离多晶硅和N-漂移层。

这种结构相当于在N-漂移层内设计一个隔离场板,隔离场板可以提供移动电荷,器件漏极和源极加上电压阻断时,补偿横向的N-漂移层电子。隔离场板沟槽底部氧化层,承受器件全部漏极和源极阻断电压,其电场强度非常高,因此,沟槽底部氧化层工艺要精确控制,避免沟槽底部局部区域氧化层变薄和防止应力造成局部缺陷产生。

(a) 两侧场板   (b)中间场板

图3  超结场板结构

超结结构纵向电场几乎是均匀分布,隔离场板结构纵向电场分布有2个峰值,1个电场峰值在P体区和N-漂移区PN结;另1个电场峰值在在场板沟槽底部。200V以下中压功率MOSFET管可以采用这种场板超结技术。

新一代超结工艺进一步减小器件晶胞尺寸,沟道和晶胞宽度进一步缩小,两个P柱之间距离非常小,难以形成满足要求的沟道区,因此,采用沟道与P柱相垂直的结构,从而减少沟道区工艺加工难度。

图4  沟道与P柱垂直结构

2、超级结构生产工艺

超结P柱结构和场板结构,生产加工工艺主要有2种方式:

(1)通过一层一层多次外延生长,得到P柱结构或场板结构。

在衬底上外延一定浓度N层,在P柱区域开窗口注入形成P层,然后重复这些工艺,反复多次外延和注入,最后形成超结结构。也可以先在衬底上外延浓度较低N-层,分别在N区和P柱区域采用注入形成N层和P层,然后重复这些工艺,反复多次外延和注入,最后形成超结结构,这种方法均匀性控制更好,增加一次光刻与注入的工艺,成本增加。

(a) 单杂质注入

(b) 双杂质注入

(c) 单杂质注入    (d) 双杂质注入 

图5  多层外延工艺

多层外延工艺每次外延层厚度非常薄,外延形成厚度相对固定,超结结构的尺寸偏差小,外延层质量容易控制,缺陷与界面态少。随着器件耐压增大,外延次数和层数增加,而且外延时间长,效率低,导致成本增加。

2)、直接开沟槽填充,即深沟槽技术Deep Trench,得到P柱结构或场板结构。

衬底和外延加工好后,在外延层刻蚀出深沟槽,沟槽的深宽比具有一定限制,然后在沟槽内部填充掺杂。可以在沟槽内外延填充P型材料,然后平坦化抛光,形成P住结构;也可以在沟槽侧壁形成薄氧化层结构,再填充多晶硅形成场板结构。另外,使用更宽的沟槽,采用外延或倾斜注入方式,在沟槽内部依附沟槽侧壁,依次形成P和N型区交错结构。

(a) 直接填充

(b) 宽沟槽侧壁注入、气相沉积与外延

图6  沟槽填充工艺

衬底和外延加工好后,在外延层(耐压层)中刻蚀出具有一定深宽比的沟槽,然后在沟槽内部填充掺杂。通常,有4种填充掺杂方式:一是在沟槽内外延填充P型材料,然后采用化学机械抛光平坦化。另外,可以在沟槽中直接通过P型杂质扩散形成P住;同时,还可以在沟槽内的侧壁上形成薄氧化层结构,再填充多晶硅形成场板结构。二是使用非常宽的沟槽,采用倾斜注入方式,同时控制N和P型杂质的注入剂量,分别在沟槽的侧壁上形成N区和P区,依次制作出P和N型区交错结构。三是通过在沟槽侧壁通过气相掺杂形成P型区。四是在沟槽侧壁选择性外延薄层N与P型,形成超结结构。

多次外延工艺相对容易控制,工艺步骤多,成本高;深沟槽工艺成本低,生产效率高,更容易实现较小的深宽比,形成的超结N区与P区掺杂分布均匀,导通电阻和寄生电容更低;但是,深沟槽工艺不容易保证沟槽内性能一致性,特别是深沟槽填充时,要保证沟槽侧面(侧壁)N和P区交界面没有空隙和孔洞,工艺要求特别高。侧壁出现空隙和孔洞,对性能影响在生产线最后检测中无法通过静态参数测量进行删选。

技术平台不一样,工艺不一样,超结结构Pitch尺寸和芯片厚度也不相同。

(a) 多层外延Multiple EPI

(b) 深沟槽直接填充Deep Trench Filling 

图7  超结结构的截面图

3、超级结构开关工作过程

超结型结构工作原理及开关工作过程如下。

(1)关断状态

垂直导电N区夹在两边P区中间,MOSFET关断时,栅极电压为0,栅极下面的P区不能形成反型层,没有导电沟道。P柱区和垂直导电N区二侧横向形成反向偏置PN结,左边P柱区和中间垂直导电N区形成PN结反向偏置,右边P柱区和中间垂直导电N区形成PN结反向偏置,PN结耗尽层增大,并建立横向水平电场。反向电压足够高时,P柱区底部和外延层N区也会形成PN结反向偏置,有利于产生更宽耗尽层,增加垂直电场。

中间垂直导电N区渗杂浓度和宽度控制得合适,就可以将其完全耗尽,这样中间垂直导电N区就没有自由电荷,内部形成横向矩形电场,且电场幅值非常高,只有外部电压大于内部横向电场,才能将其击穿,所以,这个区域耐压非常高。

(a) 开始建立耗尽层  (b) 完全耗尽

图8  横向电场及耗尽层建立

(2)开通状态

栅极加上驱动电压时,栅极表面将积累正电荷,同时,吸引栅极氧化层下面P区内部电子到P区上表面,将P区上表面空穴中和,形成耗尽层。随着栅极电压提高,栅极表面正电荷增强,进一步吸引P区内部更多电子到P区上表面,这样,在P区上表面薄层,积累负电荷(电子)形成N型反型层,构成电流通道,即沟道。由于更多负电荷在P区上表面积累,一些负电荷将扩散进入原来完全耗尽垂直导电N区,横向耗尽层宽度越来越减小,横向电场也越来越小。栅极电压进一步提高,栅极氧化层下面P区更宽范围形成N型反型层沟道,电子不断流入垂直导电N区,垂直导电N区回到初始渗杂状态,形成低导通电阻的电流路径。

(a) VGS加正电压  (b)  VGS增加形成反型层   

(c) VGS增加沟道建立  (d)  沟道加宽完全导通

图9  超结结构导通过程

4高压浮岛结构

另外还有一种介于平面和超结结构中间类型,这种结构内部P区被N-外延层包围,称为P型浮岛结构,电流密度低于超结型,高于普通平面工艺,抗雪崩能力强于超结结构。

图10  浮岛结构

这种结构工作原理是在内部浮岛P区和N-外延层交接处形成耗尽层,将N-外延层三角形电场在中间位置提升,从而提高耐压,这样可以适当减薄N-外延层厚度,降低导通电阻。

P型浮岛需要在N-外延层内部开出较深沟槽,形成P型浮岛结构,然后,沟槽里面填充多晶硅,连接到源极,沟槽深度并没有贯穿整个芯片厚度。沟槽深度越深,P型浮岛结构数量越多,耐压越高,但成本增加。

制作过程使用多次外延或深沟槽工艺,多次外延层数远少于超结结构,浮岛结构P型掺杂浓度控制没有超结严格,只要保证在反向偏压下不完全耗尽就可以,工艺成本低于超结结构;另外,正向导通时,P型浮岛浮空,不会向N-外延层注入非平衡少子,二极管特性好于超结结构。

松哥电源 松哥电源,致力于提供一个电力电子及电源系统设计与交流的空间,聚集背景相类、价值观相同的电子工程师的智慧,探讨理论,关注细节,评说经验,分享电力电子及电源系统设计的快乐。
评论 (0)
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 43浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 37浏览
  • 在公共安全、工业调度、户外作业等场景中,对讲机作为关键通信工具,正面临从“功能单一化”向“智能融合化”的转型需求。WT2605C蓝牙语音芯片凭借双模蓝牙架构、高扩展存储方案与全场景音频处理能力,推动传统对讲机实现无屏化操控、专业级音频解码与蓝牙音箱功能融合,为行业用户打造更高效、更灵活、更低成本的通信解决方案。一、无屏化交互革命:BLE指令重构操作逻辑针对工业环境中对讲机操作复杂、屏幕易损的痛点,WT2605C通过双模蓝牙(BR/EDR+BLE)与AT指令集,实现全链路无屏控制:手机APP远程控
    广州唯创电子 2025-04-14 09:08 19浏览
  •   电磁干扰测试系统:电子设备电磁兼容性保障利器   北京华盛恒辉电磁干扰测试系统作为评估电子设备在电磁环境中电磁兼容性(EMC)的关键工具,主要用于检测与分析设备在电磁干扰环境下的性能表现,确保其符合相关标准,能够在实际应用中稳定运行。   应用案例   目前,已有多个电磁干扰测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰测试系统。这些成功案例为电磁干扰测试系统的推广和应用提供了有力支持。   系统组成   电磁干扰测试系统一般由以下核心部分构成:  
    华盛恒辉l58ll334744 2025-04-14 10:40 21浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 52浏览
  •   电磁干扰测试系统软件:深度剖析   电磁干扰(EMI)测试系统软件,是电子设备电磁兼容性(EMC)测试的核心工具,在通信、汽车、航空航天、医疗设备等众多领域广泛应用。它的核心功能涵盖信号采集、频谱分析、干扰定位、合规性评估以及报告生成,旨在保障设备在复杂电磁环境中稳定运行。下面从功能、技术原理、应用场景、主流软件及发展趋势这五个方面展开详细解析。   应用案例  软件开发可以来这里,这个首肌开始是幺乌扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照你的顺序组合可以找到。   目前
    华盛恒辉l58ll334744 2025-04-14 10:02 21浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 39浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 33浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 35浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 30浏览
  •  亥姆霍兹线圈的制造材料选择需兼顾导电性、绝缘性、机械强度及磁场性能,具体分类如下:一、‌导线材料1、‌高纯度铜线:‌作为线圈绕制的核心材料,铜因其you异的导电性(电阻率低)和热稳定性成为shou选。漆包铜线通过表面绝缘漆层实现匝间绝缘,避免短路‌。2、‌其他导电材料‌ 铝线等材料可用于特定场景(如轻量化需求),但导电性和抗氧化性较铜略逊二、‌磁源材料‌1、‌永磁体‌如钕铁硼(NdFeB)或铁氧体,适用于无需外部电源的静态磁场生成,但磁场强度有限。2、‌电磁铁‌通过电流控制磁场强度,
    锦正茂科技 2025-04-14 10:22 19浏览
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 41浏览
我要评论
0
3
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦