锂电池阶梯充电方式与循环衰减机制!

锂电联盟会长 2023-10-01 22:27

点击左上角“锂电联盟会长”,即可关注!

目前,锂离子电池应用和测试使用的充电制度主要是恒流恒压(CC-CV)充电方法。这种充电方法简单易行,操作方便。但随着锂离子电池快充的应用需求越来越高,该方法的局限性也越来越明显。特别是大电流恒流恒压充电会直接影响电池的使用寿命,甚至在电池经历一定时间使用后,大电流恒流恒压充电的潜在风险会越来越大。

还有其他比较有代表性的充电制式,如阶梯充电制式(MSCC)和脉冲充电制式(PC)。阶梯充电可以简单理解为几个CC-CV的分段进行,分段的选择需要依据电池的基本充电属性来确定。脉冲充电制式主要表现在充电电流在大小和方向上呈现出周期性的变化。这种充电制式操作起来相对比较复杂,对设备的响应精度要求高。

锂离子电池充电过程中涉及复杂的正、负极材料相变转化、界面电化学反应、极化作用和不可逆反应。从电池CC-CV充电电压-容量曲线也可以看到,在恒流充电阶段,电池容量并非随电池充电电压呈现线性增加,而是在不同荷电状态(SOC)下,充电电压变化表现出明显区别。这是由正极、负极材料和电池设计所决定的。本文依据锂离子电池充电属性,结合电池材料相变转化特点,在保证电池循环寿命前提下,制定阶梯充电制度,提高电池的充电效率。

1 实验
1.1 实验内容
采用方形电芯(NCM811/石墨体系,设计容量64.0Ah,电压范围2.8~4.2V)进行阶梯充电制式确定、阶梯充电循环验证及衰减机制分析。在保证电芯循环寿命的前提下,为方形电芯配置30min充电80% SOC的快充策略。

1.2 分析测试
1.2.1 倍率充电性能
电芯在不同倍率(0.2C, 0.8C, 1.0C, 1.2C, 1.6C, 2C)下进行充电性能测试。电芯倍率充电性能测试在美国Arbin公司的BT-2000(5V, 200A)设备上完成。

1.2.2 阶梯快充循环
电芯在阶梯快充制式进行循环性能测试。快充循环测试在美国Arbin公司的BT-2000(5V, 200A)设备上完成。每100次快充循环测试完成后,进行0.2C容量标定。

1.2.3 充电直流内阻
在电芯快充循环前、快充循环测试进行中和每100次快充循环完成后进行充电直流内阻(DCIR)测试。充电DCIR测试在0~75% SOC进行,每5% SOC选取一点测试。锂离子电池的充电DCIR测试在美国Arbin公司的BT-2000(5V, 200A)设备上完成。

2 结果与讨论

2.1 阶梯充电制式
2.1.1 倍率充电性能
电芯倍率充电性能数据如表1所示。电芯在2C下充电,恒流容量比为80.92%。电芯在1.6C下充电,恒流容量比为82.98%。这说明电芯的倍率性能较为优异,采用1.6C恒流恒压充电制式可完成30min充电80% SOC的快充目标。在1.6C充电80% SOC的瞬时电压为4.168V,非常接近电芯的充电截止电压。电芯在1.2C、1.0C、0.8C下,恒流容量比分别达到85.55%、87.47%和90.73%。
2.1.2 阶梯充电制式确定
电芯不同倍率充电dV/dQ曲线如图1所示,dV/dQ曲线中的特征峰主要反应的是正、负极活性物质在脱锂和嵌锂过程中的相变。以0.2C充电dV/dQ曲线为例,特征峰1(5% SOC)主要反映的是正、负极材料整体的初始相变。特征峰2(15%SOC)反应的是负极材料相变,特征峰3(20% SOC)反应的是正极材料相变,特征峰4(55% SOC)由正极材料和负极材料的相变反应共同构成,但是主要还是以负极材料的相变为主。特征峰5(80% SOC)主要是反应正极材料的相变。特征峰6(98% SOC)是由正、负极材料共同确定的。当充电倍率增大时,正、负极材料的相变会提前发生,从而形成多相并存的现象,表现出某些相变峰发生向左偏移,甚至消失。
当充电倍率达到1.6C时,与1.2C相比,特征峰1(5%SOC)没有变化。反应负极材料相变的特征峰2(15% SOC)消失,特征峰4消失,特征峰5虽然存在,但与特征峰6非常接近,特征峰6(98% SOC)严重向左偏移至(82% SOC)。这说明充电倍率增加到1.6C,低SOC(≤55%)正、负极材料相变反应无法区分,此区间的dV/dQ的绝对值要低于高SOC(>55%)。高 SOC(>55%)正、负极材料相变反应同样无法区分,SOC接近100% 时,相变反应变化较大。

当充电倍率达到2.0C时,与1.6C相比,特征峰5消失,特征峰6(98% SOC)严重向左偏移至(81% SOC)。这说明充电倍率增加到2.0C,低于81% SOC正、负极材料相变反应均已无法区分。综上所述,为了达到30min充电80% SOC的快充目标,同时又避免潜在的析锂风险。充电阶梯初步确定有明显相变峰出现的SOC,例如5% SOC、55% SOC、80% SOC。阶梯充电倍率以dV/dQ的绝对值为依据,dV/dQ的绝对值越小的区间,选择大倍率充电,dV/dQ的绝对值较小的区间,选择相对较小的倍率充电。例如小于55% SOC时,充电倍率可以选择2C,大于55% SOC时,充电倍率尽量不高于1.6C。

电芯充电DCIR曲线如图2所示,电芯(7#、8#)在低SOC态下,充电DCIR比较高,特别是在SOC为0时,充电DCIR为2.68mΩ。0~5% SOC时,充电DCIR≥1.77mΩ。随着电芯SOC的增大,其充电DCIR迅速降低。从充电DCIR的角度来看,在0~5% SOC 区间,采用较小的充电倍率充电,可以有效降低能量损失。

综合倍率充电dV/dQ-SOC曲线和充电DCIR曲线,确定电芯阶梯充电制式,如图3所示。该阶梯充电制式共分为7个阶梯。前五个阶梯共用时30min,累计充电容量80%。后20%充电容量采用0.5C充电至截止电压。
图4为该阶梯充电制式的实际应用效果。该阶梯充电制式可以实现30min充电80% SOC的快充目标。电芯充满电所需时间为61.73min。平均充电倍率约为1.4C。电芯达到80% SO 时的电压为4.1V,瞬时电流为0.93C,要远远低于1.6C。

2.2 阶梯充电循环验证及衰减分析
2.2.1 阶梯充电循环曲线
电芯采用阶梯快充制式和1C恒流恒压充电制式,放电倍率为1C,进行循环性能测试。图5为电芯阶梯充电循环曲线。两种制式均完成(2.8~4.2V) 100%放电深度(DOD)满充满放。电芯在阶梯快充制式下循环800次,1C放电容量保持率≥91.99%。同时该方案电芯在1CC/1CD完成800次循环,容量保持率≥94.06%。两种制式1C放电容量保持率相差2.07%。
2.2.2 阶梯充电循环衰减分析
电芯在不同循环次数的阶梯充电曲线如图6所示。电芯阶梯充电第5次循环,满足30min充电80% SOC的快充目标。经过200次阶梯充电循环后,充电30min充电79.0%SOC,快充能力发生1.0%的损失。快充能力损失主要是由第二阶梯大倍率充电导致的。经过400次循环后,其充电30min充电78.7% SOC,快充能力发生1.3%的损失,与第400次阶梯充电曲线无明显区别。经过800次循环后,充电30min充电76.97% SOC,快充能力发生3.03%的损失。综上可知,电芯经过阶梯充电循环后,其容量损失主要发生在第二阶梯2C充电阶段。随着后续各个阶梯充电倍率降低,对充电容量进行补偿。

电芯在不同制式循环后0.2C充电dV/dQ-SOC曲线如图7所示,阶梯充电循环后与1.0C循环后的dV/dQ-SOC曲线基本一致。而且dV/dQ曲线中的正、负极活性反应物质在脱锂和嵌锂过程中的相变的特征峰位置基本没有发生明显变化。说明两种循环制式下的正、负极材料本身没有发生明显的结构变化,没有形成由材料失效造成的容量衰减。
随着循环次数的增加,dV/dQ曲线的相对绝对值有所增大,这是由于电芯直流充电内阻增大所致。直流内阻增大主要是正、负极材料表面固态电解质膜(CEI)和固态电解质膜(SEI)增厚所致。CEI和SEI膜的增厚直接原因是充放电过程中副反应的累计,成体系中活性锂离子损失,从而表现为电芯放电容量衰减。这种容量衰减在正常范内。

3 结论与展望
依据三元/石墨体系60Ah锂离子电池的充电属性,制定阶梯充电制式。在阶梯充电制式下,电芯实现30min充电80% SOC的快充目标,完成800次阶梯充电循环,容量保持率≥91.99%。并且通过分析可知,电芯阶梯充电循环容量衰减主要表现为活性锂离子损失。正、负极材料未见明显异常。该阶梯充电制式的制定方法操作简单、快捷准确,既可以保证锂离子电池的循环性能,又可以针对性地提高电池的充电效率,在锂离子电池快充方面具有较高的实际应用价值。

文献参考:周江,于宝军.锂离子电池阶梯充电制式与循环衰减机制[J].电源技术,2023,47(6):741-744

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 231浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 78浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 375浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 209浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 253浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 181浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 170浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 526浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 638浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 128浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 117浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 375浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦