HBM崛起:从GPU到CPU

智能计算芯世界 2023-09-29 07:37

本文来自“2023新型算力中心调研报告(2023)”。更多内容参考“《海光CPU+DCU技术研究报告合集(上)》 ”,“《海光CPU+DCU技术研究报告合集(下)》 ”和“龙芯CPU技术研究报告合集”。

HBM(High Bandwidth Memory,高带宽内存)是 2014 年 AMD、SK海力士(SK Hynix)共同发布的,使用 TSV 技术将数个 DRAM Die(晶片)堆叠起来,大幅提高了容量和数据传输速率。

随后三星、美光、NVIDIA、Synopsys 等企业积极参与这个技术路线,标准化组织 JEDEC 也将 HBM2 列入标准(JESD235A),并陆续迭代了HBM2e(JESD235B)以及HBM3(JESD235C)。得益于堆叠封装,以及巨大的位宽(单封装 1024bit),HBM 提供了远超其他常见内存形态(DDR DRAM、LPDDR、GDDR 等)的带宽和容量。


典型的实现方式是通过 2.5D 封装将 HBM 与处理器核心连接,这在 CPU、GPU 等产品中均有应用。早期也有观点把 HBM 视作 L4 Cache,从 TB/s 级的带宽角度看,也算合理。而从容量角度,HBM 就比 SRAM 或 eDRAM 大太多了。由此,HBM 既可以胜任(一部分)的工作,也可以当做高性能内存使用。

AMD 是 HBM 的早期使用者,发展至今,AMD Instinct MI250X 计算卡在单一封装内集成了 2 颗计算核心和 8 颗 HBM2e,容量共 128GB,带宽达到 3276.8GB/s。

NVIDIA 应用 HBM 的主要是专业卡,其 2016 年的 TESLA P100 的 HBM 版搭配了 16GB HBM2,随后的 V100 搭配了 32GB HBM2。目前当红的 A100 和 H100 也都有 HBM 版,前者最大提供 80GB HBM2e、带宽约 2TB/s;后者升级到 HBM3,带宽约 3.9TB/s。

华为的昇腾 910 处理器也集成了 4 颗 HBM。对于计算卡、智能网卡(SmartNIC)、高速 FPGA 等产品,HBM 作为一种 GDDR 的替代品,应用已经非常成熟了。

CPU 也已开始集成 HBM,其中最突出的案例是曾经问鼎超算 TOP500 的富岳(Fugaku),使用富士通研发的 A64FX 处理器。A64FX 基于 Armv8.2-A,采用 7nm 制程,每封装内集成了 4 颗 HBM2,容量 32GB,带宽 1TB/s。

△ 富士通 A64FX CPU

英特尔在 2023 年 1 月中与第四代至强可扩展处理器一同推出的至强 Max 系列,在前者的基础上集成了 64GB 的 HBM2e。这些 HBM2e 可以作为内存独立使用(HBM Only 模式),也可以搭配 DDR5 内存共同使用(HBM Flat Mode 和 HBM Caching Mode 两种工作模式)。

△ Intel Xeon Max 系列,注意外围的 4 颗 HBM 芯片

中介层:CoWoS 与 EMIB

值得一提的是,目前 HBM 与处理器“组装”在一起都需要借助硅中介层。传统的 ABS 材质基板等难以胜任超高密度的触点数量和高频率。硅中介层有两种技术思路,代表是台积电的CoWoS(chip-on-wafer-on-substrate)和英特尔的EMIB(Embedded Multi-Die Interconnect Bridge)。
△ HBM 的基本结构。左侧彩色的 5 层结构为 HBM 封装。灰色为中介层
台积电 CoWoS-S 通过硅中介层承载处理器和 HBM。其硅中介层也被称为硅基础层,因为中介层会完全承载其他芯片。换句话说,处理器和若干 HBM 的投影面积决定了硅基础层的大小,而基础层的面积会限制 HBM 的使用数量(常见的就是 4 颗)。硅中介层使用 65nm 之类的成熟工艺制造,其成本并不高昂,但尺寸受限于光刻掩膜尺寸。
这就成为了早期 HBM 应用的瓶颈——需要 HBM 的往往是高性能的大芯片,而大芯片的规模本身就已经逼近了掩膜尺寸极限,给HBM留下的面积非常有限。到了 2016 年,台积电终于突破了这个限制,实现 1.5 倍于掩模尺寸的中介层,从此单芯片内部可封装 4 颗 HBM,这就是当前市场上的主流形态了。

△ 台积电 CoWoS-S 发展路线

2019 年,台积电宣称实现 2 倍掩膜尺寸,可以支持 6 颗 HBM 了。很快,2020年发布的 NEC SX-Aurora TSUBASA 矢量处理器,集成6 颗共 48GB HBM2;同年的英伟达 A100 则是 6 颗共 40GB HBM2e(有一颗HBM未启用)。

至于可以封装 12 颗 HBM 的巨型芯片,预计面积将达到 3200 平方毫米(mm²)。硅中介层的面积如此发展,下一个瓶颈就是硅晶圆的切割效率了。

另一种思路是英特尔的 EMIB,使用的硅中介层要小得多。以第四代英特尔至强可扩展处理器的渲染图为例,棕色的小方块就是 EMIB 的“桥”,用以将 4 个 XCC 的 die 拼为一个整体;而在至强 Max 系列中,每个 die 还需要通过 EMIB 去连接对应的 HBM 芯片。结合 HBM 的架构示意图可以看出,英特尔认为只需要通过硅中介层连接内存和处理器的 PHY 部分,其他信号依然可以直通基板。整体而言,EMIB 充分利用了硅中介层和有机载板的技术特点和电气特性,但也存在组装成本高的缺点(需要在有机载板中镶嵌,增加了工艺复杂度,限制了载板的选择)。

当然,对于更复杂的“组装”,英特尔也有对应的方案,如代号 Ponte Vecchio 的英特尔数据中心 GPU Max 系列整合了基于 5 种制造工艺生产的 47 个小芯片,其中的基础层(Base Die)的面积为650mm²。该产品综合了 Foveros 3D封装和 EMIB 2.5D 封装的特点,纵向横向齐发展。

英特尔数据中心 Max GPU 系列引入了 Base Tile的概念,姑且称之为基础芯片。相对于中介层的概念,我们也可以把基础芯片看作是基础层。基础层表面上看与硅中介层功能类似,都是承载计算核心、高速 I/O(如 HBM),但实际上功能要多得多。硅中介层的本质是利用成熟的半导体光刻、沉积等工艺(65nm 等级),在硅上形成超高密度的电气连接。而基础层更进一步:既然都要加工多层图案,为什么不把逻辑电路之类的也做进去呢?

△ 英特尔数据中心 Max GPU

Intel 在 ISSCC2022 中展示了英特尔数据中心 Max GPU 的Chiplet(小芯片)架构,其中,基础芯片面积为 640mm²,采用了 Intel 7 制程——这是目前Intel用于主流处理器的先进制程。为何在“基础”芯片上就需要使用先进制程呢?因为 Intel 将高速 I/O 的 SerDes 都集成在基础芯片中了,其作用有点儿类似 AMD 的 IOD。这些高速 IO 包括 HBM PHY、Xe Link PHY、PCIe 5.0,以及,这一节的重点:Cache。这些电路都比较适合 5nm 以上的工艺制造,将它们与计算核心解耦后重新打包在一个制程之内是相当合理的选择。

△ 英特尔数据中心Max GPU的基础芯片。注意,此图中的两组 Xe Link PHY应为笔误。芯片下方应为两个 HBM PHY 和一个Xe Link PHY


英特尔数据中心 Max GPU 系列通过 Foveros 封装技术在基础芯片上方叠加 8 颗计算芯片(Compute Tile)、4 颗 RAMBO 芯片(RAMBO Tile)。计算芯片采用台积电 N5 工艺制造,每颗芯片都自有 4MB L1 Cache。RAMBO是“Random Access Memory, Bandwidth Optimized”的缩写,即为带宽优化的随机访问存储器。独立的 RAMBO 芯片基于 Intel 7 制程,每颗有 4 个 3.75MB 的 Bank,共 15MB。每组 4 颗 RAMBO 共提供了 60MB 的 L3 Cache。此外,在基础芯片中也有 RAMBO,容量有 144MB,外加 L3 Cache 的交换网络(Switch Fabric)。

△ 英特尔数据中心 Max GPU 的 Chiplet 架构

因此,在英特尔数据中心 Max GPU 中,基础芯片通过了 Cache 交换网络,将基础层内的 144MB Cache,与 8 颗计算芯片、4 颗 RAMBO 芯片的 60MB Cache 组织在一起,总共 204MB L2/L3 Cache,整个封装是两组,就是 408MB L2/L3 Cache。

英特尔数据中心 Max GPU 的每组处理单元都通过 Xe  Link Tile 与另外 7 组进行连接。Xe Link 芯片采用台积电 N7 工艺制造。

△ Xe   HPC 的逻辑架构

△ Xe Link 的网状连接

前面已经提到,I/O 芯片独立是大势所趋,共享 Cache 与 I/O 拉近也是趋势。英特尔数据中心 Max GPU 将 Cache 与各种高速 I/O 的 PHY 集成在同一芯片内,正是前述趋势的集大成者。至于 HBM、X

Link 芯片,以及同一封装内相邻的基础芯片,则通过 EMIB(爆炸图中的橙色部分)连接在一起。

△ 英特尔数据中心Max GPU爆炸图

根据英特尔在 HotChips 上公布的数据,英特尔数据中心 Max GPU 的 L2 Cache 总带宽可以达到 13TB/s。考虑到封装了两组基础芯片和计算芯片,我们给带宽打个对折,基础芯片和 4 颗 RAMBO 芯片的带宽是 6.5TB/s,依旧远远超过了目前至强和 EPYC 的 L2、L3 Cache 的带宽。其实之前 AMD 已经通过了指甲盖大小的 3D V-Cache 证明了 3D 封装的性能,那就更不用说英特尔数据中心 Max GPU 的 RAMBO 及基础芯片的面积了。

△ 英特尔数据中心Max GPU的存储带宽

回顾一下 3D V-Cache 的弱点——“散热”不良,我们还发现将 Cache 集成到基础芯片当中还有一个优点:将高功耗的计算核心安排在整个封装的上层,更有利于散热。再往远一些看,在网格化的处理器架构中,L3 Cache 并非简单的若干个块(切片),而是分成数十甚至上百单元,分别挂在网格节点上的。基础芯片在垂直方向可以完全覆盖(或容纳)处理器芯片,其中的 SRAM 可以分成等量的单元与处理器的网格节点相连。

换句话说,对于网格化的处理器,将 L3 Cache 移出到基础芯片是有合理性的。目前已经成熟的 3D 封装技术的凸点间距在 30~50 微米的量级,足够胜任每平方毫米内数百至数千个连接的需要,可以满足当前网格节点带宽的需求。更高密度的连接当然也是可行的,10 微米甚至亚微米的技术正在推进当中,但优先的场景是 HBM、3D NAND 这种高度定制化的内部堆栈的混合键合,未必适合 Chiplet 对灵活性的要求。

下载链接:
2023新型算力中心调研报告(2023)
九天人工智能大模型创新实践
联邦学习算力加速方案
400+份重磅ChatGPT专业报告(合集)
隐私计算中的多层次计算技术
端云协同隐私计算系统的设计和落地探索
《大模型和AIGC技术合集(2023.9)》
1、AI大模型落地的前景和痛点,兼谈工程师架构师所面临的机会和挑战 
2、AIGC驱动下高校数字化转型 
3、大模型趋势下的企业数据体系思考 
4、大模型时代下数据中台该何去 
5、大模型重塑软件开发以及实践案例展示 
6、当GPT遇到低代码低代码平台AIGC开发落地实战
7、迈向通用人工智能时代之路——边缘与管力网络演进及思考
8、网宿边缘智能平台与AIGC探索
人工智能和虚拟现实将如何改变职场世界
2023年生成式人工智能的突破年
华为昇腾:国产AI算力的扛旗者(2023)
中国联通新一代AI计算基础设施白皮书
开放加速规范AI服务器设计指南(2023)
《未来网络白皮书(2023)合集》
1、未来网络白皮书(2023):算网操作系统白皮书 
2、未来网络白皮书(2023):以网络IO为中心的无服务器数据中心白皮书 
3、未来网络白皮书(2023):光电融合服务定制广域网白皮书

人工智能专题报告:智算中心—赋能AI产业化、产业AI化(2023)

中国超导体行业:立足科技前沿,满足能源战略需求(2023)
行业报告:大模型推理算力知多少?
艾瑞咨询:2023年中国AIGC产业全景报告
体系化人工智能与大模型(2023)

多样性算力:新一代计算架构超异构计算

聚力“高广深”打造先进算力网络

生成式AI:产业变革与机会(2023论坛合集)

《全球OCP峰会Chiplet资料汇总》
华为鲲鹏处理器介绍
鲲鹏计算产业发展白皮书
华为鲲鹏生态研究框架

《“东数西算”技术分析合集》

《2023年液冷技术白皮书汇总》

1、浸没式液冷数据中心热回收白皮书(2023) 2、数据中心绿色设计白皮书(2023)
2022年算力强基行动产品目录(2023)

世界AI大会系列:数据为核,迈向多模态AI大模型时代

AI精华系列报告:AMD发布MI300,指引Chiplet等AI芯片新方向
《CXL论坛:CXL全球厂商方案合集》
1、CXL-Forum AMD技术方案.pdf 
2、CXL-Forum CXL-Consortium技术方案.pdf
3、CXL-Forum Elastics cloud技术方案.pdf 
4、CXL-Forum Intel技术方案.pdf 
5、CXL-Forum Marvell技术方案.pdf 
6、CXL-Forum MemVerge技术方案.pdf 
7、CXL-Forum Micron技术方案.pdf
玄铁RISC-V处理器入门及实战
《芯来科技RISC-V设计与实现合集》
1、芯来科技:基于RISC-V的MCU软硬件解决方案
2、芯来科技:高可靠高安全性RISC-V处理器设计与实现


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。


温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 148浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 104浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 122浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 87浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 173浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 104浏览
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 159浏览
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 97浏览
  • 故障现象 一辆2024款路虎发现运动版车,搭载2.0 L发动机,累计行驶里程约为5 000 km。车主反映,使用遥控器无法解锁车门,随后使用机械钥匙打开车门,踩下制动踏板,按压起动按钮,仪表盘提示“将智能钥匙放在图示位置,然后按下起动按钮”(图1)。 图1 故障车的仪表盘提示采用上述应急起动方法,发动机能够起动着机。上述故障现象已出现过多次,过一段时间又会恢复正常,这次故障出现要求将车辆拖入店内进行彻底检修。 故障诊断 车辆进店后进行试车,车辆一切功能又恢复正常。经过反复测试
    虹科Pico汽车示波器 2025-03-20 10:17 84浏览
  • 在电子制造领域,PCB(印刷电路板)的使用寿命直接决定了产品的长期稳定性和可靠性。捷多邦作为全球领先的PCB制造商,始终将质量放在首位,致力于为客户提供高可靠性、高性能的PCB解决方案。以下是捷多邦如何确保PCB使用寿命超过20年的核心技术与优势。 1. ​高品质原材料:从源头保障耐用性捷多邦采用国际认证的优质基材,如FR4、高频材料和高TG板材,确保PCB在高温、高湿等极端环境下的稳定性。通过严格的原材料筛选和入库检验,捷多邦从源头控制质量,避免因材料缺陷导致的失效问题。 
    捷多邦 2025-03-20 11:22 98浏览
  • 4月8-11日,第91届中国国际医疗器械博览会(CMEF)将在国家会展中心(上海)举办。这场全球瞩目的医疗科技盛宴以“创新科技,智领未来”为主题,旨在全方位展示医疗科技的最新成果,与来自全球的行业同仁一道,为全球医疗健康领域带来一场科技与商贸交融的产业“盛宴”。飞凌嵌入式作为专业的嵌入式技术解决方案提供商,一直致力于为医疗器械行业提供丰富的、高可靠性的嵌入式硬件主控解决方案。届时,飞凌嵌入式将为来自全球的观众带来适用于IVD、医疗影像、生命体征监测等医疗设备的嵌入式板卡、显控一体屏产品以及多款动
    飞凌嵌入式 2025-03-20 11:46 39浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 100浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 106浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦