高压功率精确测量选探头? DP0001A拍了拍你~

电子工程世界 2020-08-24 00:00

本文大约4000字,介绍了以下内容

• 示波器探头的基本原理

• 第三代宽禁带半导体测试

• DP0001A高压差分探头



WBG功率器件、功率转换器或电机驱动器的高压功率如何精确测量呢?


带宽高、负载效应低的高压差分探头DP0001A拍了拍你~



DP0001A技能库


精确测量现代开关电源中边沿速度(10%-90%)最快达到 1.2 ns 的 1kV 瞬态脉冲。


共模抑制比(CMRR)超过 90 dB,能够显著简化噪声较大的高共模功率电子环境所面临的测量难题。


与 Infiniium 示波器一起使用的时候,支持自动切换衰减比。


与 N7013A 极限温度延长套件配合,可在 -40 °C 至 +85 °C 的温度范围内使用。



01.

示波器探头的基本原理


示波器探头是示波器与待测设备之间的连接件。示波器探头的选择将直接影响示波器输入的信号质量。大部分人会比较关注示波器本身的使用,却容易忽略探头的选择。

实际上,探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器再好也没有用。所以,在测量信号之前,首先需要做的是选择一款合适的探头。


如何选择示波器探头呢?

一般我们会根据下面六个因素进行综合选择:



01. 信号带宽

整个测量系统的带宽由示波器、探头、信号源共同决定。

对于高斯频响的示波器和探头,系统带宽为:

对于平坦响应的示波器和探头,系统带宽为:

由系统带宽计算公式可知,探头对于测量系统的带宽影响是很大的。所以,对于嵌入式设计中的高速差分或单端探测在搭配选择测量系统时需选择合适的探头配合示波器进行测量。




示波器与探头理想搭配小贴士



具有极低的输入电容和平坦响应的InfiniiMax 3.5 GHz 1131B 差分探头是 Infiniium 2.5 GHz 至 3 GHz 示波器的理想搭配。

InfiniiMax 5 GHz 1132B 差分探头是 Infiniium 4 GHz 示波器的理想搭配。

InfiniiMax 7 GHz 1134B 差分探头是 Infiniium 6 GHz 示波器的理想搭配。 


02. 被测对象的阻抗

我们选择探头的时候,最好选择高阻抗、低电容的探头,以最大限度的降低信号源的探头负载。像一般的CMOS、TTL电路等对于绝大多数模拟或数字电路的通用调式和故障诊断来说,高阻无源探头(例如Keysight  N2873A ,500 MHz , 9.5 pF 输入电容)足够了。

但在高频范围中,例如芯片到芯片间快速、低功耗连接的HSIC USB,一般的高阻无源探头都不适用。

图1:USB 测试说明


这是因为,尽管典型的LVCMOS输入的泄漏电流很低,但对输入电容要求较高。HSIC USB仅允许14 pF的包括PC板走线和接收器电容的总电容负载。所以,HSIC测试需要较低的电容负载。

另外,HSIC使用相对较高的频率。STROBE的基本频率为240 MHz,至少需要1.5 GHz带宽才能清楚看到STROBE和DATA之间的时序关系。所以对这类高频测量应用来说,最好直接选用有源探头(例如Keysight N2795A /N2796A, 1/2GHz 带宽, 1 pF 输入电容),价格只需1000美元左右,相比市面上4pf的无源探头也不会贵很多,关键有源探头电容负载效应显著的降低,因而可以更精确地观察快速信号,特别适合于数字系统设计、元器件设计/表征及教育研究方面的应用。

03. 信号大小或动态范围

04. 单端测量还是差分测量

05. 探头的输出阻抗

06. 价格



了解了示波器探头的选择依据!

     那可供选择的示波器探头的种类有哪些呢?




02.

第三代宽禁带半导体测试


2020年2月13日,小米65W氮化镓充电器发布引发行业内外的高度关注。小米65WPD充电器的核心器件采用的是氮化镓,因其禁带宽度大于2.2eV,被称为宽禁带半导体材料。

在国内氮化镓又称为第三代半导体材料。半导体材料发展非常迅速:

第一代半导体材料:

主要以硅(Si)、锗(Ge)为主,主要应用于低压、低频、中功率晶体管以及光电探测器中。

第二代半导体材料:

以砷化镓(GaAs)、磷化铟(InP)为代表,主要用于制作高速、高频、大功率以及发光电子器件。

第三代半导体材料:

以碳化硅(SiC)和氮化镓(GaN)为代表,因其具有高热导率、高击穿场强、高饱和电子漂移速率和高键能等优点,可以满足现代电子技术中对高温、高功率、高压、高频以及抗辐射等恶劣条件的新要求。


图2:三代半导体材料主要应用


1978年推出了具有更快开关速度的第一代半导体材料Si功率MOSFET取代当时较慢且老化的双极型功率器件。采用这种功率MOSFET最佳应用例子是面向桌面计算机的开关电源。

从此,MOSFET成为半导体行业的首选电源转换器件。开关电源的好坏关系到产品的整体性能。因此,在研发和生产测试中对于电源的精确分析显得尤为重要。


电源测试中大多数电压测试是浮地测试,需要用差分探头测试。


很多初级工程师在用多个探头进行电源测量时,刚开机电源产品就“炸机”,甚至示波器也发生损坏。

这是因为示波器探头之间是共地的,在同时测量电源原边和副边的时候,如果用一根探头接原边的地,另一根探头接副边的地,相当于把电源的原边和副边的地短路在一起,这样短路后的大电流就会烧坏电源产品和探头,甚至是损坏示波器。所以,在测试原边和副边的电压时应该一侧选用差分探头,一侧选用无源或有源单端探头。


无源探头或单端有源探头共模电压范围小,不能满足测试精度。


在没有差分探头时,有种方法是使用两根单端有源探头,接入到示波器的两个模拟通道,然后使用示波器中的Math运算功能做CH1-CH2,进行浮地测量。

这种方法的缺点是需占用2个示波器通道,且最大的限制主要是共模电压测量范围极小,时常遇到两通道电压都很高但差值很小的情况,测量误差极大。


常见的高压差分探头共模耐压与衰减比有关,影响测试结果。


市面上高压差分探头存在的问题是共模耐压会随着衰减比的变化而变化。

图3:市面上高压差分探头共模耐压和衰减比

这就给上管Vgs的测试带来很大的问题,比如某型号差分探头在100:1的衰减比下差模耐压和共模耐压都是700V,非常适合AC转DC相关拓扑的500V-600V耐压功率器件Vds电压测试。

但是,当我们需要测试Vgs电压的波形时,为了得到更高的测试精度,更小的垂直刻度,需要把衰减比调整到10:1。但在10:1衰减比下,该探头的共模耐压会降低到70V,因此不能用于上管Vgs的测试,如果需要测试上管Vgs电压波形,就只能用100:1,这样会使Vgs的测试结果误差非常的大。


大多商用高压差分探头带宽不到300MHz,不能满足测试需求。


随着电源工作频率的不断提高,工程师已经开始采用高频功率开关和整流器技术。从传统平面或沟槽MOSFET开关的上升/下降时间为30ns到60ns发展到超结MOSFET、GaN MOSFET、SiC MOSFET和SiC肖特基整流管等功率开关的开关时间不到5ns。为观察如此快速的信号变化,通常需要足够带宽的测量系统。 

根据前面对测量系统带宽的介绍,我们知道带宽要足够不仅是示波器的带宽要足够,探头的带宽也要足够。多年来示波器发展迅速,当前实时示波器最大带宽已达到110GHz带宽,而示波器探头一直是测量系统的瓶颈。

所以,一般示波器带宽不会选错,基本上来说如果是AC转DC的硅基MOSFET管,100MHz的带宽就够了。如果是IGBT,需要50MHz到100MHz带宽。对于低压的MOSFET管(DC转DC)则需要200MHz带宽。如果是SiC材料的测试,带宽一般要200MHz左右,GaN材料则需要400MHz的带宽。

我们前面提到的带宽的需求,比如GaN需要400MHz带宽,不是仅仅指示波器的带宽,而是说整个测量系统的带宽,包括示波器、探头、以及延长线。从被测设备到示波器之间的任何一个环节都会影响测试系统的带宽。所以说,如果我们测试系统需要400MHz的带宽,那么我们的探头也至少是400MHz的带宽。遗憾的是,大多数商用的电压差分探头无法在这么高的频率下工作。


GaN材料MOSFET管测试需要高带宽高压差分探头测试。



图4:第三代半导体主要应用范围


GaN材料主要应用于偏低压应用例如800V以下的应用,像高功率密度DC/DC电源的40V-200V增强性高电子迁移率异质节晶体管(HEMT)和600V HEMT混合串联开关。当然现在也有800V以上的一些应用也是用GaN材料的。在这些应用中需要选用高压差分探头进行测试。


SiC材料测试中高温测试需求增多,需要宽温度范围的探头。


SiC材料主要偏向高压的应用。因其具有承受高温(300℃左右温度是没有问题的)的特点主要应用场景是在汽车和光伏逆变器等领域。这些器件的应用会对整个电源系统有很大的改进。


综上所诉,针对宽禁带材料功率器件的测试,我们需要的是包括示波器、示波器探头以及测试软件的一套完整的测试系统。其中,对示波器探头的具体要求如下:

01


电气性能符合要求-带宽、输入电压范围(单端还是差分)、低噪声、高输入阻抗以及高共模抑制比;

02


探头前端满足规范要求;

03


探头易用性;

04


探头有没有过载保护;

05


温度范围满足规范要求,例如汽车测试需要在85℃左右;

06


高共模抑制比,防止共模信号对输出有影响;




对于电源工程师来说,除了器件本身的测试之外,更关注器件在电路板中的性能,例如器件在工作过程中Vds电压以及损耗。器件损耗的原因主要有两个方面:(1)耐压击穿;(2)损耗。在测试过程中需要注意的几个问题是:

图5:器件损耗测试注意的问题


除了以上提到的问题,浮地测量时地的选取以及不能和损耗&SOA同时测试也是需要我们注意的问题。



03.

DP0001A高压差分探头


专为进行精确的高压功率测量而设计高压差分探头DP0001A具有哪些具体性能?

图6:DP0001A高压差分探头



DP0001A 是一款 400 MHz 高压差分探头,专为进行精确的高压功率测量而设计。

DP0001A 具有 2 kV 主电源隔离度或 1 kV CAT III 额定工作电压,可以满足当今 WBG 电力设备测试、功率转换器或电机驱动器的测试需求。

DP0001A 探头的特点是带宽高、负载效应低。因此可以精确测量现代开关电源中边沿速度(10%-90%)最快达 1.2 ns 的 1kV 瞬态脉冲。

DP0001A 探头其共模抑制比(CMRR)超过 90 dB,能够显著简化噪声较大的高共模功率电子环境所面临的测量难题。


相比传统的IGBT,高压硅基MOSFET等,SiC和GaN宽禁带功率器件具有更快的开关速度,因此也需要更高的测试带宽。

DP0001A高压差分探头能够以400MHz的带宽提供2KV的测试电压范围,很好的解决了宽禁带功率器件带来的测试挑战。



接下来,让我们通过一个9分钟的视频

深入了解一下这款探头吧!





小知识



DP0001A高压差分探头采用特殊设计,共模耐压不会随着衰减比的变化而变化,在低衰减比下,依然保持着较高的带宽和共模耐压,非常适合上管的Vgs电压测试。特别是有高带宽需求的SiC和GaN宽禁带功率器件的Vgs电压波形的测试。

图6:DP0001A高压差分探头共模耐压值


此外, DP0001A当与 Infiniium 示波器一起使用时,该探头支持衰减比自动切换,也就是将探头衰减比自动设置为与测试相匹配的值,从而使探头的动态范围大于或等于测量电流输入信号所需的动态范围。


最后,是德科技提供了完整的探头系列产品。满足各种不同的测试需求,具体内容,在下面的PDF文件中,点击按钮下载:


图7:是德科技完整的探头系列产品



扫描下方二维码注册抽奖和下载资料




 资料预览 


<<< 滑动查看

资料包括海报信号的旅程在示波器内部,是德科技示波器探头完整系列产品。



 礼品预览 


时尚遮阳帽

颈枕

三合一数据线

*奖品图片仅供参考,具体以实物为准
为确保奖品邮寄,请准确填写收件信息



参考文献:

  • USB and HSIC Protocol Triggering and Decode

  • 第三代半导体产业技术创新战略联盟简报

  • 开关电源设计(第三版),Pressman,Abraham I,电子工业出版社,2010.


点击“阅读原文”立即注册


聚焦行业热点, 了解最新前沿
敬请关注EEWorld电子头条
http://www.eeworld.com.cn/mp/wap
复制此链接至浏览器或长按下方二维码浏览
以下微信公众号均属于
  EEWorld(www.eeworld.com.cn)
欢迎长按二维码关注!

EEWorld订阅号:电子工程世界
EEWorld服务号:电子工程世界福利社
电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 206浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 27浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦