Verilog入门笔记,新手必看!

嵌入式ARM 2023-09-27 15:28
动态截取固定长度数据语法,即+:和-:的使用,这两个叫什么符号呢?运算符吗?
Verilog比较方便的一个特点就是数据的截取和拼接功能了,截取使用方括号[],拼接使用大括号{},例如:

reg [7:0] vect;

wire a;
wire [3:0] b,
wire [5:0] c;

assign a = vect[1];       //取其中1Bit
assign b[3:0] = vect[7:4];//截取4Bit
assing c[5:0] = {a, b[3:0], 1'b1}; //拼接

于是举一反三(zi zuo cong ming),为了实现动态截取固定长度数据的功能,使用软件编程的思维写了如下语句,功能很好理解,根据cnt的值,每次截取vect的5Bit数据。

reg [7:0] vect;
reg [1:0] cnt;
wire [4:0] out;

assign out = vect[cnt+4:cnt];

一顿操作猛如虎,编译一看傻如狗。使用ModelSim编译之后,提示有如下语法错误:

** Error: test.v(10): Range must be bounded by constant expressions.

提示vect的范围必须为常量表达式。也就是必须为,vect[6:2]vect[7:4],不能是vect[a:0]vect[4:b],或vect[a:b]。额,这该怎么办呢?

既然有这个使用场景,那Verilog在设计之初就应该会考虑到这个应用吧!于是就去翻IEEE的Verilog标准文档,在5.2.1章节发现了一个用法可以实现我这个需求,那就是+:-:符号,这个用法很少,在大部分关于FPGA和Verilog书籍中都没有提到。

大致意思就是,可以实现动态截取固定长度的数据,基本语法为:

vect[base+:width]或[base-:width]

其中base可以为变量,width必须为常量。
下面来举几个例子来理解这个符号。
有如下定义:

reg [7:0] vect_1;
reg [0:7] vect_2;

wire [2:0] out;

以下写法分别表示什么呢?

vect_1[4+:3];
vect_1[4-:3];
vect_2[4+:3];
vect_2[4-:3];

分为以下三个步骤:
1)先看定义
vect_1[7:0]定义是大端模式,则vect_1[4+:3]和vect_1[4-:3]转换后也一定为大端模式;vect_2[0:7]定义是小端模式,则vect_2[4+:3]和vect_2[4-:3]转换后也一定为小端模式。
2)再看升降序
其中+:表示升序,-:表示降序
3)看宽度转换

vect_1[4+:3]表示,起始位为4,宽度为3,**升序**,则vect_1[4+:3] = vect_1[6:4]
vect_1[4-:3]表示,起始位为4,宽度为3,**降序**,则vect_1[4-:3] = vect_1[4:2]



同理:

vect_2[4+:3]表示,起始位为4,宽度为3,升序,则vect_2[4+:3] = vect_2[4:6]
vect_2[4-:3]表示,起始位为4,宽度为3,降序,则vect_2[4-:3] = vect_2[2:4]


ModelSim仿真验证,新建test.v文件:

module test;

    reg [7:0] vect_1; 
    reg [0:7] vect_2;

    initial
    begin
        vect_1 = 'b0101_1010;
        vect_2 = '
b0101_1010;

        $display("vect_1[7:0] = %b, vect_2[0:7] = %b", vect_1, vect_2);
        $display("vect_1[4+:3] = %b, vect_1[4-:3] = %b", vect_1[4+:3], vect_1[4-:3]); 
        $display("vect_2[4+:3] = %b, vect_2[4-:3] = %b", vect_2[4+:3], vect_2[4-:3]); 

        $stop;
    end

endmodule

在ModelSim命令窗口输入:

//进入到源文件所在文件夹
cd c:/users/whik/desktop/verilog
//编译
vlog test.v
//仿真
vsim work.test
//运行
run -all
//运行结果
# vect_1[7:0] = 01011010, vect_2[0:7] = 01011010
# vect_1[4+:3] = 101, vect_1[4-:3] = 110
# vect_2[4+:3] = 101, vect_2[4-:3] = 011
# ** Note: $stop    : test.v(15)
#    Time: 0 ps  Iteration: 0  Instance: /test
# Break in Module test at test.v line 15

这种语法表示需要注意,前者起始位可以是变量,后者的宽度必须是常量,即vect[idx+:cnt]不符合语法标准,vect[idx+:4]或vect[idx-:4]才符合。

END

来源:电子电路开发学习

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
探秘:稚晖君的个人工作室!
麒麟9000s,并非来自SMIC,而是...
程序员最容易读错的单词,听到status我炸了

→点关注,不迷路←

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论 (0)
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 389浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 211浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 210浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 146浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 91浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 268浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 77浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 83浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 156浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 190浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 319浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 236浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦