函数指针几个应用场景

C语言与CPP编程 2023-09-27 09:47

击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号

干货福利,第一时间送达!

最近有小伙伴说没有收到当天的文章推送,这是因为微信改了推送机制,有一部分小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了,建议大家加个星标⭐️,就能第一时间收到推送。

最近李伟老师讲了《C++ Primer 5th》这本书的视频,他是美国微软高级工程师,清华大学博士,帮忙推广一下,感兴趣的可以看看。

回调函数

回调函数是指在某个事件发生时被调用的函数。通常,回调函数是在某个库函数或框架函数中注册的,当某个条件满足时,库函数或框架函数会调用回调函数来执行相应的操作。以下是一个示例:

void handle_event(int event_type, void (*callback)(void)){    printf("event %d occurred\n", event_type);
if (callback) { callback(); }}

void callback_function(){ printf("callback function called\n");}

int main(){ handle_event(1, callback_function); handle_event(2, NULL); return 0;}

在上面的代码中,我们定义了一个 handle_event 函数,它接受两个参数:一个事件类型和一个函数指针。如果函数指针不为空,则会调用指定的函数。

在 main 函数中,我们分别调用 handle_event 函数来触发两个事件,其中第一个事件注册了一个回调函数 callback_function,第二个事件没有注册回调函数。

函数参数化

函数参数化是指通过函数指针将函数的某些行为参数化。这样,我们可以在调用函数时动态地指定函数的行为。以下是一个示例:

void process_array(int *arraysize_t size, int (*process)(int)){    for (size_t i = 0; i < size; i++)    {        array[i] = process(array[i]);    }}
int increment(int n){ return n + 1;}
int main(){ int array[] = {1, 2, 3, 4, 5}; size_t size = sizeof(array) / sizeof(int); process_array(array, size, increment); for (size_t i = 0; i < size; i++) { printf("%d ", array[i]); } printf("\n"); return 0;}

在上面的代码中,我们定义了一个 process_array 函数,它接受三个参数:一个整型数组、数组大小和一个函数指针。函数指针指向一个函数,该函数接受一个整型参数并返回一个整型结果。

学习单片机编程,重在动手,给大家推荐郭天祥老师的《新概念51单片机C语言教程》,有视频讲解、有例程代码,链接如下:


在 process_array 函数中,我们将数组中的每个元素传递给指定的函数,然后将函数的返回值存储回原数组中。

在 main 函数中,我们定义了一个 increment 函数,它将传入的整数加 1。然后,我们调用 process_array 函数来处理整型数组,并打印出结果。

排序算法

排序算法是函数指针的另一个常见应用场景。通过传递不同的比较函数,我们可以在不同的排序算法中重用相同的代码。以下是一个示例:

typedef int (*compare_func_t)(const void *, const void *);
void sort(int *array, size_t size, compare_func_t compare_func){ qsort(array, size, sizeof(int), compare_func);}
int compare_int(const void *a, const void *b){ return (*(int*)a - *(int*)b);}
int compare_reverse_int(const void *a, const void *b){ return (*(int*)b - *(int*)a);}
int main(){ int array[] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5}; size_t size = sizeof(array) / sizeof(int); sort(array, size, compare_int); for (size_t i = 0; i < size; i++) { printf("%d ", array[i]); } printf("\n"); sort(array, size, compare_reverse_int); for (size_t i = 0; i < size; i++) { printf("%d ", array[i]); } printf("\n"); return 0;}

在上面的代码中,我们定义了一个 sort 函数,它接受三个参数:一个整型数组、数组大小和一个比较函数指针。

比较函数指针指向一个函数,该函数接受两个指向常量 void 类型的指针,并返回一个整型结果。

在 sort 函数中,我们使用标准库函数 qsort 来对整型数组进行排序,其中比较函数指针由调用者传递。

在 main 函数中,我们定义了两个比较函数 compare_int 和 compare_reverse_int,分别用于升序和降序排序。然后,我们调用 sort 函数来对整型数组进行排序,并打印出结果。

函数指针数组

函数指针数组是指一个数组,其中的每个元素都是一个函数指针。这种数组可以用于实现一个分派表,根据输入参数的不同,动态地调用不同的函数。以下是一个示例:

void add(int a, int b){    printf("%d + %d = %d\n", a, b, a + b);}
void subtract(int a, int b){ printf("%d - %d = %d\n", a, b, a - b);}
void multiply(int a, int b){ printf("%d * %d = %d\n", a, b, a * b);}
void divide(int a, int b){ if (b == 0) { printf("cannot divide by zero\n"); } else { printf("%d / %d = %d\n", a, b, a / b); }}
typedef void (*operation_func_t)(int, int);
int main(){ operation_func_t operations[] = {add, subtract, multiply, divide}; size_t num_operations = sizeof(operations) / sizeof(operation_func_t); int a = 10, b = 5; for (size_t i = 0; i < num_operations;i++) { operations[i](a,b); } return 0;}

在上面的代码中,我们定义了四个函数 add、subtract、multiply 和 divide,分别对两个整数进行加、减、乘和除操作。

然后,我们定义了一个函数指针类型 operation_func_t,它指向一个接受两个整型参数并没有返回值的函数。

接着,我们定义了一个函数指针数组 operations,其中的每个元素都是一个 operation_func_t 类型的函数指针,分别指向 add、subtract、multiply 和 divide 函数。

在 main 函数中,我们使用 for 循环遍历 operations 数组,并依次调用每个函数指针所指向的函数。在每次调用函数之前,我们可以根据需要设置 a 和 b 的值。这样,我们就可以动态地选择要执行的操作。

函数指针与回溯法

回溯法是一种求解一些组合优化问题的算法,它通常使用递归来实现。函数指针可以用于实现回溯法算法的一些关键部分。

以下是一个使用回溯法来计算排列的示例:

typedef void (*callback_func_t)(const int *, size_t);
void swap(int *a, int *b){ int tmp = *a; *a = *b; *b = tmp;}
void permute(int *nums, size_t len, size_t depth, callback_func_t callback) { if (depth == len) { callback(nums, len); return; } for (size_t i = depth; i < len; i++) { swap(&nums[depth], &nums[i]); permute(nums, len, depth + 1, callback); swap(&nums[depth], &nums[i]); }}
void print_array(const int *arr, size_t len){ for (size_t i = 0; i < len; i++) { printf("%d ", arr[i]); } printf("\n"); }}
int main(){ int nums[] = {1, 2, 3}; permute(nums, sizeof(nums) / sizeof(int), 0, print_array); return 0;}

在上面的代码中,我们定义了一个函数 permute,用于计算给定数组的排列。

在 permute 函数中,我们使用递归来生成所有可能的排列,并使用函数指针 callback 来指定每当我们生成一个排列时应该调用的函数。

在本例中,我们将 print_array 函数作为回调函数传递给了 permute 函数。这意味着每当 permute 函数生成一个排列时,它都会调用 print_array 函数来打印这个排列。

在 main 函数中,我们定义了一个包含三个整数的数组 nums,并使用 permute 函数来计算这个数组的所有排列。在每次生成一个排列时,permute 函数都会调用 print_array 函数来打印这个排列。

函数指针与多态

多态是面向对象编程中的一个重要概念,它允许我们在不知道对象类型的情况下调用相应的函数。虽然 C 语言不是面向对象编程语言,但我们仍然可以使用函数指针来实现多态。

以下是一个使用函数指针实现多态的示例:

typedef struct shape{    void (*draw)(struct shape *);} shape_t;
typedef struct circle{ shape_t shape; int x; int y; int r;} circle_t;
typedef struct rectangle{ shape_t shape; int x; int y; int w; int h;} rectangle_t;
void circle_draw(shape_t *shape){ circle_t *circle = (circle_t *)shape; printf("Drawing a circle at (%d, %d) with radius %d.\n", circle->x, circle->y, circle->r);}
void rectangle_draw(shape_t *shape){ rectangle_t *rectangle = (rectangle_t *)shape; printf("Drawing a rectangle at (%d, %d) with width %d and height %d.\n", rectangle->x, rectangle->y, rectangle->w, rectangle->h);}
int main(){ circle_t circle = { .shape = {circle_draw}, .x = 10, .y = 20, .r = 5, }; rectangle_t rectangle = { .shape = {rectangle_draw}, .x = 30, .y = 40, .w = 15, .h = 20, }; shape_t *shapes[] = {(shape_t *)&circle, (shape_t *)&rectangle}; for (size_t i = 0; i < sizeof(shapes) / sizeof(shape_t *); i++) { shapes[i]->draw(shapes[i]); } return 0; }

在上面的代码中,我们定义了一个 shape 结构体,它有一个函数指针 draw,用于绘制该形状。

我们还定义了两个形状:circle 和 rectangle,它们分别包含它们自己的属性和一个指向 shape 结构体的指针。每个形状都定义了自己的 draw 函数,用于绘制该形状。

在 main 函数中,我们定义了一个 shape_t 类型的数组,其中包含一个 circle 和一个 rectangle。我们使用一个循环来遍历这个数组,并使用每个形状的 draw 函数来绘制该形状。

注意,尽管 shapes 数组中的元素类型为 shape_t *,但我们仍然可以调用每个元素的 draw 函数,因为 circle 和 rectangle 都是从 shape_t 派生出来的,它们都包含一个 draw 函数指针。

这个例子演示了如何使用函数指针来实现多态。尽管 C 语言不支持面向对象编程,但我们可以使用结构体和函数指针来实现类似的概念。

总结

函数指针是一种强大的工具,可以用于实现许多不同的编程模式和算法。

本文中,我们介绍了函数指针的基本概念和语法,并提供了一些高级应用场景的代码示例,包括回调函数、函数指针数组、函数指针作为参数、函数指针与递归、函数指针与多态等。

使用函数指针可以帮助我们编写更加灵活和通用的代码,并提高代码的可重用性和可扩展性。

原文:https://zhuanlan.zhihu.com/p/625882785

本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

EOF

你好,我是飞宇,本硕均于某中流985 CS就读,先后于百度搜索以及字节跳动电商等部门担任Linux C/C++后端研发工程师。

同时,我也是知乎博主@韩飞宇,日常分享C/C++、计算机学习经验、工作体会,欢迎点击此处查看我以前的学习笔记&经验&分享的资源。

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会

加个微信,打开另一扇窗

C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 37浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 145浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 47浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦