这是射频美学的第1387期分享。
来源 | 整编;
微圈 | 进微信群,加微信: RFtogether521 ;
备注 | 昵称+地域+产品及岗位方向 (如大魔王+上海+芯片射频工程师);
宗旨 | 看到的未必是你的,掌握底层逻辑才是。
放大器的非线性是半导体器件中一种普遍存在的现象,尤其在输入信号较大时,非线性效应将更加明显。由于放大器具有增益功能,使得它比其他半导体器件更容易出现非线性失真,这也是为什么我们特别关注放大器非线性的原因。本文将以放大器为例,讨论交调失真及其测试方法。
交调失真对系统的影响
交调失真不仅会影响无线通信系统的发射链路性能,还会对接收链路的性能产生负面影响。
在发射链路上,功率放大器是最容易受到非线性影响的部件。当信号为宽带调制信号时,在信号带宽内外都会产生丰富的交调成分。带外的交调成分会对其他信道造成干扰,通常通过邻道泄露比(ACLR)或邻道功率比(ACPR)来衡量。带内的交调成分会对信号本身造成干扰,降低信噪比或信干比。对于卫星通信系统而言,噪声功率比(NPR)是一个重要的参数。
在接收链路中,主要关注前端低噪声放大器的交调失真。当信号附近存在强烈的双音或多音干扰时,交调失真成分会落入信号带宽内,从而降低接收机的灵敏度。手机的"双音灵敏度"测试就是针对这种情况进行的,在相邻信道上施加双音干扰信号,以测试接收机在此条件下的灵敏度。规范中定义了双音干扰的频率和幅度,要求灵敏度必须满足一定要求。因此,射频前端低噪声放大器需要具备出色的线性度。
总之,交调失真对无线通信系统的发射和接收链路性能都有重要影响。在射频放大器的设计和调试过程中,非线性性能是一个不可忽视的考虑因素。
交调失真产生机制概述
当向放大器输入单音信号(即单频点信号)时,放大器将输出基频及其谐波成分。而当输入双音或多音信号时,放大器的非线性将导致不同频率的组合,产生交调失真成分。
在众多非线性失真项中,从频谱角度来看,距离基频信号最近的是差频三阶交调成分:(2ꞷ1 - ꞷ2) 和 (2ꞷ2 - ꞷ1)。在宽带通信系统中,这些成分对信号本身和邻道造成的干扰最为显著。而且,三阶交调成分在交调产物中具有相对较强的幅度,因此被广泛关注。通常所提供的有源器件的交调失真参数主要指的是三阶交调失真。
然而,交调失真不仅限于泰勒级数展开的三阶项,实际上还会产生五阶、七阶等奇数高阶项,只是随着阶数的增加,其贡献逐渐减少。
为了便于定量分析,下表给出了泰勒级数展开后五阶项以内的基频及三阶交调失真的系数。
表1. 基频及三阶交调失真的系数(5阶项以内)
coefficient | cos(2ꞷ1-ꞷ2)t | cosꞷ1t | cosꞷ2t | cos(2ꞷ2-ꞷ1)t |
(cosꞷ1t+ cosꞷ2t)1 | 0 | 1 | 1 | 0 |
(cosꞷ1t+ cosꞷ2t)2 | 0 | 0 | 0 | 0 |
(cosꞷ1t+ cosꞷ2t)3 | 3/4 | 9/4 | 9/4 | 3/4 |
(cosꞷ1t+ cosꞷ2t)4 | 0 | 0 | 0 | 0 |
(cosꞷ1t+ cosꞷ2t)5 | 25/8 | 25/4 | 25/4 | 25/8 |
在对数坐标系下,我们可以得出以下结论:
无论是基频信号还是三阶交调失真,在放大器输出侧,功率随输入功率的变化都不是线性的。
当输入信号功率较低时,基频信号和三阶交调失真的输出功率与输入功率呈近似线性关系。这一点很重要,因为在计算三阶交调点(IP3)功率时需要基于这种近似线性关系。
在近似线性区域,随着输入功率增加,三阶交调失真的功率比基频信号的功率增加更快,其增加速度是基频功率的三倍。
在较低输入功率条件下(通常远小于0dBm),三阶交调分量的功率远小于基频信号功率。
随着输入功率进一步增大,基频和三阶交调失真的输出功率曲线的非线性越来越明显,逐渐呈现压缩状态。
三阶交调失真通常使用"三阶交调失真度(IMD3, 3rd order intermodulation distortion)"和"三阶交调点(IP3, 3rd order intercept point)"两个参数来衡量。IP3实际上是指三阶交调点对应的输入或输出功率。
在近似线性区域,基频和三阶交调失真的功率输出特性曲线均呈现近似线性关系。由于斜率不同,二者的延长线将会相交,这个交点即为三阶交调点IP3。然而,在实际应用中很难达到IP3所对应的输出功率,IP3的引入主要是为了以统一的方法衡量半导体器件的非线性特性。
在近似线性区域内,输入功率每增加1dB,IMD3将恶化2dB;反之,输入功率每降低1dB,IMD3将改善2dB。然而,如果超出近似线性区域,这种关系则不成立。
如何测试三阶交调失真度及交调点功率?
测试IMD3和IP3并不困难,但在测试过程中需要注意一些细节,以确保测试结果的准确性。
对于三阶交调的测试,需要输入等幅双音信号,并根据待测件的要求设置双音频的间距。在测试IMD3时,双音信号的幅度可以大或小,但如果要测试IP3,如前文所述,幅度不能过大,必须确保待测件工作在近似线性区域。
在测试中,常见的方法是使用两个信号源提供双音信号,这样可以提供相对较纯净的双音信号。另一种方法是使用矢量信号源,通过编辑基带波形文件,在单个通道上输出双音信号。然而,这种方法产生的信号本身会有一定的三阶交调失真,因此只在无法使用两个信号源时才采用。
在测试过程中,需要特别注意频谱仪的设置,以避免其自身进入非线性状态并产生强烈的三阶交调失真。频谱仪在测试中会产生一定的交调失真,但不能太强,否则会干扰测试结果的准确性。
(1) 在测试三阶交调失真时,我们可以通过增大频谱仪内部的前端衰减器来判定其产生的交调失真对测试结果的影响。如果三阶交调分量变化不大,则可以忽略频谱仪本身产生的交调失真。如果三阶交调分量变小,则需要进一步增大衰减度,直到三阶交调分量变化不大。但是,使用衰减器会降低测试动态范围,因此在必要时,可以考虑使用陷波器来衰减基频信号,以防止频谱仪产生较强的交调失真。
在测试功率放大器的三阶交调失真时,务必在馈入频谱仪之前使用适当功率容量的衰减器,以确保不会对频谱仪造成损害。如果需要实现较高的测试动态范围,则需要使用陷波器来衰减基频信号。
(2) 在信号源方面,有两个需要注意的事项,其中之一是双音信号的幅度。
在测试IMD3时,并不对双音信号的幅度有过高的要求,但在测试IP3时,输入信号的幅度不能太高,必须确保放大器工作在近似线性区域。建议双音信号的幅度低于1dB增益压缩点输入功率(Pin,1dB),至少比其低20dB。无论是测试IMD3还是IP3,记录测试结果时务必注明双音频的间距和幅度。
判定方法:如果输入功率增加1dB,IMD3恶化2dB,则说明放大器仍然工作在近似线性区域,可以计算IP3。
另一个需要注意的点是,使用图中所示的测试装置可能会导致合路器输出端已经存在三阶交调产物。这与信号源的自动功率控制环路有关,具体原因将在后续介绍中详述。简而言之,由于合路器的有限端口隔离度,导致信号反向串入信号源,并经过自动功率控制环路的作用,使得信号源本身输出了双音信号及交调失真信号。
建议在进行测试之前,先使用频谱仪测试双音信号,观察是否存在较强的三阶交调失真。
如何降低这种情况对测试结果的影响?
大多数信号源都支持手动关闭自动功率控制功能(ALC),这可以有效避免上述情况的发生。然而,关闭ALC功能后,输出功率的稳定度也会降低。
另一种方法是使用高隔离度的耦合器来代替合路器,或者在每个信号源的输出端连接一个衰减器,以增加彼此之间的隔离度。
声明: 欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为射频美学。 本公众号目前传播内容为本公众号原创、网络转载、其他公众号转载、累积文章等,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系,我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。