【干货分享】跟大师一起学习环路补偿

一点电子 2023-09-25 11:30
点击👆一点电子👇关注我,右上角“...设为 星标★技术干货第一时间送达!

作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手、高手、新手,几乎对控制环路的设计一筹莫展,基本上靠实验。靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎么计算,至少使大家在有问题时能从理论上分析出解决问题的思路。


一、零、极点的概念










示意图:



这里给出了右半平面零点的原理表示,这对用PSPICE 做仿真很有用,可以直接套用此图。



递函数自己写吧,正好锻炼一下,把输出电压除以输入电压就是传递函数。


bode 图可以简单的判定电路的稳定性,甚至可以确定电路的闭环响应,就向我下面的图中表示的,零、极点说明了增益和相位的变化。


二、主极点补偿










单极点补偿,适用于电流型控制和工作在DCM 方式并且滤波电容的ESR 零点频率较低的电源。其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180 度以前使其增益降到0dB。也叫主极点补偿。



双极点,单零点补偿,适用于功率部分只有一个极点的补偿。如:所有电流型控制和非连续方式电压型控制。



三极点,双零点补偿.适用于输出带LC 谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。



C1 的主要作用是和R2 提升相位的。当然提高了低频增益.在保证稳定的情况下是越小越好。


C2 增加了一个高频极点,降低开关躁声干扰。


串联C1 实质是增加一个零点,零点的作用是减小峰值时间,使系统响应加快,并且闭环越接近虚轴,这种效果越好。所以理论上讲,C1 是越大越好,但要考虑,超调量和调节时间,因为零点越距离虚轴越近,闭环零点修正系数Q 越大,而Q 与超调量和调节时间成正比,所以又不能大.总之,考虑闭环零点要折衷考虑并联C2 实质是增加一个级点,级点的作用是增大峰值时间,使系统响应变慢。所以理论上讲,C2也是越大越好,但要考虑到,当零级点彼此接近时,系统响应速度相互抵消。从这一点就可以说明,我们要及时响应的系统C1 大,至少比C2 大。


三、环路稳定的标准










只要在增益为1 时(0dB)整个环路的相移小于360 度,环路就是稳定的。但如果相移接近360 度,会产生两个问题:1)相移可能因为温度,负载及分布参数的变化而达到360 度而产生震荡;2)接近360 度,电源的阶跃响应(瞬时加减载)表现为强烈震荡,使输出达到稳定的时间加长,超调量增加,如下图所示具体关系。



所以环路要留一定的相位裕量,如图Q=1 时输出是表现最好的,所以相位裕量的最佳值为52度左右,工程上一般取45 度以上.如下图所示:



这里要注意一点,就是补偿放大器工作在负反馈状态,本身就有180 度相移,所以留给功率部分和补偿网络的只有180 度.幅值裕度不管用上面哪种补偿方式都是自动满足的,所以设计时一般不用特别考虑.由于增益曲线为-20dB/decade 时,此曲线引起的最大相移为90 度,尚有90 度裕量,所以一般最后合成的整个增益曲线应该为-20dB/decade 部分穿过0dB.在低于0dB 带宽后,曲线最好为-40dB/decade,这样增益会迅速上升,低频部分增益很高,使电源输出的直流部分误差非常小,既电源有很好的负载和线路调整率.


四、如何设计控制环路?










经常主电路是根据应用要求设计的,设计时一般不会提前考虑控制环路的设计.我们的前提就是假设主功率部分已经全部设计完成,然后来探讨环路设计.环路设计一般由下面几过程组成:


1) 画出已知部分的频响曲线.


2) 根据实际要求和各限制条件确定带宽频率,既增益曲线的0dB 频率.


3) 根据步骤2)确定的带宽频率决定补偿放大器的类型和各频率点.使带宽处的曲线斜率为20dB/decade,画出整个电路的频响曲线.


上述过程也可利用相关软件来设计:如pspice, POWER-4-5-6.一些解释:



已知部分的频响曲线是指除Kea(补偿放大器)外的所有部分的乘积,在波得图上是相加.


环路带宽当然希望越高越好,但受到几方面的限制:a)香农采样定理决定了不可能大于1/2Fs; b)右半平面零点(RHZ)的影响,RHZ 随输入电压,负载,电感量大小而变化,几乎无法补偿,我们只有把带宽设计的远离它,一般取其1/4-1/5;c)补偿放大器的带宽不是无穷大,当把环路带宽设的很高时会受到补偿放大器无法提供增益的限制,及电容零点受温度影响等.所以一般实际带宽取开关频率的1/6-1/10


五、反激设计实例










条件: 输入85-265V 交流,整流后直流100-375V

输出12V/5A

初级电感量370uH

初级匝数:40T,次级:5T

次级滤波电容1000uF X 3=3000uF

震荡三角波幅度2.5V

开关频率100K

电流型控制时,取样电阻取0.33 欧姆

下面分电压型和峰值电流型控制来设计此电源环路.所有设计取样点在输出小LC 前面。如果取样点在小LC 后面,由于受LC 谐振频率限制,带宽不能很高。


1) 电流型控制


假设用3842,传递函数如下


此图为补偿放大部分原理图.RHZ 的频率为33K,为了避免其引起过多的相移,一般取带宽为其频率的1/4-1/5,我们取1/4 为8K。分两种情况:


A) 输出电容ESR 较大



输出滤波电容的内阻比较大,自身阻容形成的零点比较低,这样在8K 处的相位滞后比较小。


Phanse angle = arctan(8/1.225)-arctan(8/0.033)-arctan(8/33)= --22 度。


另外可看到在8K 处增益曲线为水平,所以可以直接用单极点补偿,这样可满足-20dB/decade的曲线形状.省掉补偿部分的R2,C1。


设Rb 为5.1K, 则R1=[(12-2.5)/2.5]*Rb=19.4K.


8K 处功率部分的增益为-20* log(1225/33)+20* log19.4 = -5.7dB因为带宽8K,即8K 处0dB


所以8K 处补偿放大器增益应为5.7dB, 5.7-20* log( Fo/8)=0

Fo 为补偿放大器0dB 增益频率


Fo= 1/(2*pi*R1C2)=15.42

C2= 1/(2*pi*R1*15.42)=1/(2*3.14*19.4*15.42)=0.53nF

相位裕度: 180-22-90=68 度


仿真图


B)输出电容ESR较小



输出滤波电容的内阻比较大,自身阻容形成的零点比较高,这样在8K 处的相位滞后比较大。


Phanse angle = arctan(8/5.3)-arctan(8/0.033)-arctan(8/33)= -47 度。


如果还用单极点补偿,则带宽处相位裕量为180-90-47=43 度.偏小.用2 型补偿来提升.三个点的选取,第一个极点在原点,第一的零点一般取在带宽的1/5 左右,这样在带宽处提升相位78 度左右,此零点越低,相位提升越明显,但太低了就降低了低频增益,使输出调整率降低,此处我们取1.6K.第二个极点的选取一般是用来抵消ESR 零点或RHZ 零点引起的增益升高,保证增益裕度.我们用它来抵消ESR 零点,使带宽处保持-20db/10 decade 的形状,我们取ESR零点频率5.3K。


数值计算:

8K 处功率部分的增益为-20* log(5300/33)+20* log19.4 = -18dB


因为带宽8K,即最后合成增益曲线8K 处0dB


所以8K 处补偿放大器增益应为18dB, 5.3K 处增益=18+20log(8/5.3)=21.6 dB


水平部分增益= 20logR2/R1=21.6 推出R2=12*R1=233K

fp2=1/2*pi*R2C2 推出C2=1/(2*3.14*233K*5.4K)=127pF.

fz1=1/2*pi*R2C1 推出C1=1/ (2*3.14*233K*1.6K)=0.427nF.

相位



2)电压型控制



fo 为LC 谐振频率,注意Q 值并不是用的计算值,而是经验值,因为计算的Q 无法考虑LC 串联回路的损耗(相当于电阻),包括电容ESR,二极管等效内阻,漏感和绕组电阻及趋附效应等。在实际电路中Q 值几乎不可能大于4—5。



由于输出有LC 谐振,在谐振点相位变动很剧烈,会很快接近180 度,所以需要用3 型补偿放大器来提升相位。其零,极点放置原则是这样的,在原点有一极点来提升低频增益,在双极点处放置两个零点,这样在谐振点的相位为-90+(-90)+45+45=-90。在输出电容的ESR 处放一极点,来抵消ESR 的影响,在RHZ 处放一极点来抵消RHZ 引起的高频增益上升。


元件数值计算,为方便我们把3 型补偿的图在重画一下。



蓝色为功率部分,绿色为补偿部分,红色为整个开环增益,如果相位裕量不够时,可适当把两个零点位置提前,也可把第一可极点位置放后一点。


同样假设光耦CTR=1,如果用CTR 大的光耦,或加有其他放大时,如同时用IC 的内部运放,只需要在波得图上加一个直流增益后,再设计补偿部分即可,这时要求把IC 内部运放配置为比例放大器,如果再在内部运放加补偿,就稍微麻烦一点,在图上再加一条补偿线。


—— End ——
免责声明:本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。    

#推荐阅读#   点击蓝色字体即可跳转

  • 单片机按键如何进行硬件消抖?

  • 这元器件切开后,也太惊呆了吧!

  • 如何避免电源设计中的电感饱和

  • 好文分享--LDO基础知识详解(二)

  • 大厂毕业!找不到工作,要降薪去小厂吗?




长按识别二维码关注我

后台回复“加群,管理员拉你加入同行技术交流群。


点个在看让我知道你喜欢今天的内容



一点电子 一点电子,专注于电子硬件技术的学习和分享。分享技术,生活乐趣、职场百态,每天进步一点点!
评论
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦