Freertos栈检测

原创 嵌入式Lee 2023-09-23 08:04

1. 前言

RTOS的环境开发中,栈的溢出检测是一个重要的工作。栈溢出检测我们可以借助硬件的MPU等实现,也可以使用软件检测。这里分享Freertos中的实现。这里基于Cortex-M4硬件平台,一些具体的代码就未贴出了,顺便介绍了一下Cortex-M4栈相关的基础知识。

2. 栈初始化

2.1任务启动前栈

复位后汇编代码

IMPORT  __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP

会进入__main将栈内容写为0。该部分由编译器产生代码实现。

栈的位置是链接脚本中指定。

2.2任务栈

xTaskCreate -> prvInitialiseNewTask将任务栈填充为tskSTACK_FILL_BYTE = ( 0xa5U )

然后调用pxPortInitialiseStack初始化任务栈上下文

任务初始化时

高地址

xPSR

portINITIAL_XPSR


PC

( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK


LR

prvTaskExitError


R12



R3



R2



R1



R0

pvParameters



portINITIAL_EXC_RETURN


R11



R10



R9



R8



R7



R6



R5


->任务切出时栈指针

R4




0xa5



0xa5



0xa5



0xa5

低地址


0xa5

任务运行一段时间后

高地址


xx

已使用部分


xx


xx


xPSR

portINITIAL_XPSR


PC

( StackType_t ) pxCode ) & portSTART_ADDRESS_MASK


LR

prvTaskExitError


R12



R3



R2



R1



R0

pvParameters



portINITIAL_EXC_RETURN


R11



R10



R9



R8



R7



R6



R5


->任务切出时栈指针

R4


未使用部分


0xa5


0xa5


0xa5


0xa5

低地址


0xa5

对应实际中断后的栈如下:

 

3.任务切换

vPortSVCHandler函数模拟中断返回

__asm void vPortSVCHandler( void )
{
PRESERVE8
/* Get the location of the current TCB. */
ldr r3, =pxCurrentTCB
ldr r1, [r3]
ldr r0, [r1]
/* Pop the core registers. */
ldmia r0!, {r4-r11, r14}
msr psp, r0
isb
mov r0, #0
msr basepri, r0
bx r14
}

其中

ldr r3, =pxCurrentTCB
ldr r1, [r3]
ldr r0, [r1]

是获取栈指针r0即指向任务栈表中R4位置

ldmia r0!, {r4-r11, r14}是恢复R4-R11portINITIAL_EXC_RETURN

msr psp, r0,更新栈指针,指向指向任务栈表中R0位置

bx r14模拟中断返回 恢复R0-R3 R12 PC xPSR(硬件实现)

由于R14=portINITIAL_EXC_RETURN=0xfffffffd

根据手册描述

 

返回时使用PSP栈,返回后使用PSP栈。与初始化对应。

4.任务return

栈初始化时LR = prvTaskExitError  进入子函数时LR会入栈,退出子函数时LR出栈。

所以如果任务不是while(1)形式而是在最后return则最终会进入

prvTaskExitError执行。一般rtos的任务都是while(1)结构 不return

5.栈指针

复位后使用MSP,任务根据返回时的LRportINITIAL_EXC_RETURN使用PSP见“2.任务切换”。

中断中固定使用MSP

 

6.栈使用

中断函数和mian使用中断向量第一个字指向的栈区域。

任务使用任务栈。

os启动前默认时使用msp,根据中断向量的第一个字加载msp

硬件实现,或者bootloader跳转到应用时配置。

启动osprvStartFirstTask,又重新将中断向量第一个字加载到msp

今后中断就使用msp对应的栈,os启动前main使用的栈。

因为main一去不复返,所以这里覆盖使用main时的栈,这样可以节约内存。

/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0

7栈检测

7.1任务栈检测

栈初始化时全部初始化为0xA5,运行一段时间后栈顶部分使用变为其他值。

检查栈底有多少连续的0xA5即可知道栈剩余多少。

 

Freertos提供接口函数uxTaskGetSystemState获取栈信息。

Shell中输入ps查看(具体代码未贴出)

 

7.2中断栈/main函数栈检测

根据4.5.的分析,中断和main函数栈使用中断向量第一个字对应的栈区域。

由于__main.c会将栈内容清除为0.所以在启动第一个任务前将栈重新填充为0xa5

__main.c之前将栈填充为0xa5又会被清除为0,将填充代码放在了任务启动前prvStartFirstTask函数中。这样main函数到prvStartFirstTask之前的栈使用大小不可监控。

只能监控后续中断使用的栈大小。如果要检测main函数栈使用则要将填充代码放在main函数执行的第一条代码后,需要嵌入汇编影响代码阅读和可移植性,所以不按这种方式。

实际上main函数栈溢出也没关系 ,但是编程必须要求提供手动初始化变量的代码,而不是依赖于编译器的初始化。

比如有一个变量static int i =0;

编译器提供代码在__main中会对该变量初始化,如果main函数栈溢出覆盖了这个变量的值。

那么在任务函数执行时提供 void mode_init(void)函数

手动再次初始化该变量i=0.

就可以避免问题。

建议在模块任务启动时对属于模块的全局变量再次提供构造函数手动初始化。

修改freertos底层移植代码

__asm void prvStartFirstTask( void )
{
PRESERVE8
/* Use the NVIC offset register to locate the stack. */
ldr r0, =0xE000ED08
ldr r0, [r0]
ldr r0, [r0]
/* Set the msp back to the start of the stack. */
msr msp, r0
//;初始化栈为0xA5A5A5A5
MOV R2,#0xA5A5A5A5
LDR R0, =0x4000
MRS R1, MSP
SUBS R1,R1,#4
LOOP STR R2,[R1,#0x00]
SUBS R0,R0,#4
SUBS R1,R1,#4
CMP R0,#0x00
BNE LOOP

增加检测代码

其中0x4000需要根据实际设置的栈大小修改。0xE000ED08为中断向量表地址。

/*****************************************************************************
* \fn uint32_t bsp_sys_getstack(void)
* \brief 获取栈大小.
* \note .
* \return 剩余栈字节数
*****************************************************************************
*/
uint32_t bsp_sys_getstack(void)
{
uint32_t size = 0;
uint32_t* p = (uint32_t*)(*(uint32_t*)(*(uint32_t*)0xE000ED08) - 0x4000);
while(*p == (uint32_t)0xA5A5A5A5)
{
size += 4;
p++;
}
return size;
}

Shell中输入stack命令查看(具体代码未贴出)

 

8. 总结

简单来说软件实现栈检测,就是将栈初始化为固定值。如果栈有使用则初始化值会变化,软件从栈底开始查找看剩余多少内容没有被改写就是剩余多少栈未使用。软件检测不是可靠的,因为溢出可能是跳跃的,即栈底一部分实际未用指针直接跳到了更后面的溢出位置,软件检测还存在延迟,所以软件检测一般可用于评估栈使用大小。使用硬件MPU更可靠,设置只有本任务只能访问本任务栈对应的空间,一旦访问其他空间就可以触发MPU中断这样更及时可靠检测。


评论 (0)
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 72浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 174浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 187浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 283浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 613浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 46浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 167浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 333浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 45浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 45浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 130浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 505浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 328浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦