【光电集成】硅光芯片的机遇与挑战

今日光电 2023-09-16 18:00
今日光电
       有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!


----与智者为伍 为创新赋能----

计算机性能至关重要,但由于简单的小型化和高积集度有先天性的限制,因此平行处理器架构和3D电路结构的发展正被半导体产业所关注。这样的技术发展带动了芯片间所需讯息传输频宽的增加,预计2025-2030年对频宽的需要将超过10Tbit/s。然而,传统电线的传输速度有10Tbit/s左右的限制,而且功耗也是一个严重的问题。

所以为了突破频宽限制和功耗的障碍,高科技产业对光电融合的期望越来越高,这使得光讯号和电讯号密不可分。光电融合预计将扩展到连接服务器中CPU的布线、连接CPU和电路的I/O,甚至CPU内部的布线。图一显示了电气布线和光布线的功耗与传输距离的关系。同时可以看发现,当传输频宽增加时,即使距离很短,光布线也变得更有优势性。

图一: 显示了电气布线和光布线的功耗与传输距离的关系性。(source:电子情报通信学会-日本;作者整理)

云服务和5G需求带动硅光子成长

根据日本Research Nester的一份关于硅光子的市场报告中显示,2022年硅光子市场规模约为20亿美元。预计到2035年底,硅光子全球市场规模将达到550亿美元,2023-2035年间的复合年增长率高达29.80%。
市场增长可归因于对基于云端的服务和5G技术的需求激增,以及光电子技术的进步。整体因素包括了,快速成长的工业4.0、越来越多的产业采用IoT设备、电信产业需求不断成长、笔记型电脑和智慧手机等消费电子产品的使用增加,以及新一代的设备已转向由人工智慧(AI)驱动发展(图二)。

图二: 对于硅光子市场成长的贡献因素(source:Research Nester;作者整理)
硅光子市场依照零组件领域可区分为,光波导、调变器、光感测器、雷射。其中雷射的部分,预计到2035年将成为最大的市场占有硅光子零件,约为35%。而在应用产品方面则可区分为收发模组、电缆、光开关、感测器、光衰减器、其他(图三)。
图三: 根据硅光子市场产品分类的比例统计。(source:Research Nester;作者整理)

共同封装光学的现状和挑战

就如上述,由于5G、物联网、人工智慧和高效能运算应用的兴起,数据中心流量以近30%的复合年成长率增长。此外,近四分之三的数据中心流量被保留或暂存在数据中心内,再加上传统的可插拔光学元件的成长速度,比数据中心流量的增长速度慢得许多,因此应用需求与传统可插拔光学元件的能力之间的差距不断扩大,这种的趋势将会导致
延缓5G、物联网、人工智慧和高效能运算应用等的扩大性,所以需要更新的封装技术来解决此一问题。
一种颠覆性的封装技术,共同封装光学元件(Co-packaged optics;CPO)就被提出来,透过先进的封装技术,以及电子学和光子学的最佳化整合,来大幅缩短电气链路长度,从而提高互连频宽密度和能源效率。因此CPO被广泛认为是未来数据中心互连的一个最有效的解决方案。
包括了Intel、Broadcom和IBM等,全球国际半导体技术领先业者,都已经投入大量资金对CPO技术展开深入研究。这是一个跨学科的研究领域,涉及了光子元件、集成电路设计、封装、光子元件建模、电子-光子整合模拟、应用和技术(图四)。
图四: 透过CPO技术将光子元件与ASIC整合到同一基板上。(source:Broadcom;作者整理)

光子封装的缩放

在过去数十年里,摩尔定律不断的导引着CMOS制造技术发展,因此大多数人也认为硅光子学应该遵循这种规模化趋势,并致力于透过低成本制造光子集成电路(PIC)来快速达到规模经济。
然而,与电子元件不同,光子元件的缩放本质上是困难的。光子元件的尺寸主要由材料的折射率对比度决定,因此硅光子元件的整体尺寸仍保持在微米级别,很难缩减到纳米级别。因此,当我们谈论硅光子的缩放时,实际上是探讨先进的制造技术如何实现光子封装的缩放。
封装概念与制程达到深度融合
要实现极高密度的光输入/输出,就必须采用高效的光纤耦合结构。耦合结构有光栅耦合器和边缘耦合器两种。光栅耦合器通常利用简单的两步骤蚀刻制程生产,来实现垂直光耦合。而光栅耦合器具有相对较宽的对准容差、较小的光学频宽和较高的偏振灵敏度。
因此,与边缘耦合器不同,光栅耦合器通常是用于晶圆级测试,而不是商业性产品。边缘耦合器可实现较小的耦合损耗和较大的光学频宽,这对于实际应用来说是理想的。然而,边缘耦合器在制造过程中需要底切(Undercut)和深蚀刻技术,而这就会影响着元件稳定性和可靠性的问题。
On-chip光源的整合是硅光子学的主要挑战之一。只依赖硅基材料很难形成高性能雷射器。因此便开发出在硅光子芯片上进行III-V化合物材料的异质材料整合,或异质结构整合的技术,但这对硅光子制造技术来说,还是需要进行重大调整。
未来,从2.5D CPO到3D CPO,CPO制程将不仅仅是一种封装技术,而是一种制造与封装的结合,需要设计与制程的共同最佳化,来让封装概念与制程达到深度融合。

设法降低光纤封装难度

在目前大多数CPO解决方案中,光输入和光输出的路径中都使用了边缘耦合器。边缘耦合器经过精心设计,可同时满足高对准容差和低插入损耗的要求。通过V型槽(V-groove)结构进行被动式的对准,典型的光纤到芯片损耗可控制在-1.5 dB。使用热移相器(Thermal Phase Shifters)等结构更有助于进一步提高对准容差。由于硅光子收发器是高速开关组装CPO系统的重要构件,其中多个收发器模组紧邻开关ASIC。如图所示,中心交换机ASIC周围有成百上千根光纤,其中既有保持偏极(Polarization-Maintaining;PM)光纤,也有非保持偏极光纤。所以必须透过采用高阶调变技术和On-chip光源的整合来减少光纤数量,降低光纤封装难度。
图五: 用于光输入的保持偏极光纤和用于光输出的非保持偏极光纤的混合封装。(source:《Co-packaged optics (CPO): status, challenges, and solutions》)

利用异质结构整合和异质整合

On-chip光源的整合方法包括异质结构整合(例如雷射二极体的Flip-Chip Bonding)和异质整合(例如,Wafer-Level Material Bonding)。
在Flip-Chip Bonding方法中,将一般雷射二极体透过共晶焊接的方式贴合在硅光子芯片上。雷射芯片和硅光子芯片之间采用Mechanical stops和fiducial marks进行高精度非主动式对准。因为利用了成熟的雷射二极体产品,来简化了开发过程,进而实现了快速商业化。而在Wafer-Level Material Bonding方法中,雷射器是在硅光子芯片制造过程中所形成的,所以III-V材料和硅波导之间的模式转变器需要对生产线前端的制程进行修改。雷射电极的制造会导致生产线后端的制程改变。
总之,硅光子生产线需要大规模重建,来实现异质整合。然而这两种方法都需要考虑散热和应变所引起的性能下降问题,以便将来能顺利应用于CPO(图六)。
图六: (a) On-chip光源的异质结构整合;(b)异质材料整合。(source:《Co-packaged optics (CPO): status, challenges, and solutions》)
在3D-CPO的结构下,硅光子芯片可作为中介层,实现更短的电路连接和更低的功耗。最近,imec展示了一种嵌入硅通孔(TSV)结构的混合组装光学模组,其射频的频宽超过了110 GHz,为下一代需要在100G baud速率运作的硅光子模组克服了障碍(图七)。在硅光子芯片上制造TSV需要额外的制程技术,包括高宽比的Bosch深反应性蚀刻,和晶圆薄化制程,这些都可能会带来产量和可靠性方面的问题。
图七: imec发表一款TSV结构的混合组装光学模组:(a)使用具有TSV结构的硅光子插层的混合组装光模组。(b)硅光子插层上的TSV制程。(source:imec;作者整理)
随着高整合化趋势的发展,标准硅光子制造技术必须与封装的发展相适应。为了满足CPO的要求,需要开发先进的硅光子制造技术和元件结构。这对于CPO应用设计人员来说,与晶圆代工厂密切合作以实现设计-制程的共同最佳化将更为有效。

硅材料对于硅光子学发展的限制

传统上,硅光子学(SiPh)被理解为基于主导常规电子电路的材料的积集光子学:硅和氧化硅(二氧化硅)。在科学文献中,这种类型的集成光子学通常称为绝缘体上硅(SOI),该术语也用于特种半导体技术。
从严格意义上讲,SOI材料可能是3D光子系列中最受限制的技术,该系列还包括基于氮化硅(SiN)和磷化铟(InP)的技术。由于其间接带隙,硅无法产生增益或雷射,也就是说该材料不能用于构建主动组件,例如光源和放大器。SiN也是如此,但这种材料比SOI具有更低的光损耗和更广泛的光谱覆盖范围。
InP是唯一一种无需外部帮助即可执行所有功能的半导体,但也具有SOI在损耗和光谱覆盖范围方面的缺点。Si和SiN平台通常都依赖于与InP的某种形式的整合(如果仅作为光源的话)。做到这一点的最佳方法是针对特定应用。
当然,SOI的特性足以满足许多有趣的应用。光可以有效地导入和导出芯片,并且可以使用重要的被动组件,例如千兆赫调变器和光感测器。除此之外,还能够利用数十年的硅制程经验(300mm晶圆、高产量、与CMOS共同整合、各种先进的3D制程技术),因此硅光子学在未来还是有很大的发展空间。
然而,SiPh越来越多地被解释为可以在CMOS晶圆厂中制造的任何类型的光子元件。在这种情况下,SiPh和SiN可以变成一个实体,因为后者也可与CMOS相容。但有一个限制,制造光损耗极低的高阶SiN波导需要很高的热预算,所以这可能与无法与其他功能的形成相容性整合。
而因为CMOS制造环境受到严格控制,某些材料是被禁止的,包括InP和其他III-V族半导体。另一方面,CMOS的定律并不是一成不变的。在过去的几十年里,晶圆厂导入了几种新材料来维持摩尔定律的运行。所以如果有强有力的商业策略,这一切皆是有可能的。然而,目前还没有任何光子学应用能够产生足以保证主流晶圆厂进行此类调整的数量。
未来SiPh需要引进更多的新材料,来不断改进性能和成本。例如,随着数据中心收发器的讯号速率超过200 Gb/s下,实现足够的调变器频宽和可接受的光损耗,就变得具有挑战性。这些障碍只能透过在混合物中引入新材料来解决。
此外,急需了解透过在前端处理环境之外,有哪些无法使用的材料,或包含这些材料的组件,可以在满足CMOS规则的同时引入新材料。但目前,还不清楚什么是最合适的整合,以及何时可以大规模展开。除了数据和电信之外,应用研究仍处于起步阶段。不过随着SiPh所彰显出的吸引力、商业策略的巩固和市场拉力的增加,或许材料极限将被证明并不像以前想像的那么困难。

来源:悦智网


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566

评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 437浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦