分析:RS485为什么要加上下拉电阻?

一点电子 2023-09-16 10:36
点击👆一点电子👇关注我,右上角“...设为 星标★技术干货第一时间送达!


485总线是一种常用的差分信号传输方式,它具有抗干扰能力强、传输距离远、节点数多等优点,广泛应用于通信、工业自动化等领域。但是,在实际应用中,我们可能会遇到一个问题,就是485总线是否需要在A和B两条线上加上下拉电阻,以及加多大的电阻合适。本文将对这个问题进行分析和解释。

一、485总线是如何工作的?



首先,我们需要了解485总线的工作原理和信号特性。根据RS-485标准,485总线是通过两条线(A和B)来传输差分信号的,根据两条线之间的电压差来判断的当前数据位是0还是1。

485传输时的数据有三种状态:

1.当A和B之间的电压差VAB=UA-UB大于+200mV时,485收发器输出的逻辑为1;

2.当A和B之间的电压差VAB=UA-UB小于-200mV时,485收发器输出逻辑为0;

3.当A和B之间的电压差VAB=UA-UB在-200mV~+200mV之间时,485收发器可能输出高电平也可能输出低电平,是一个不确定的状态。

二、如何避免出现不确定状态?


在正常情况下,我们希望接收器收到的数据只能是0或1,对于不确定的状态是不能出现在485总线上的。那么,什么情况下会出现不确定的状态呢?

主要有以下两种情况:

1.当485总线处于空闲状态时,所有的485收发器都处于接收状态,没有任何一个收发器在驱动总线时。此时,由于没有任何信号源在总线上产生差分电压,A和B两条线上的电压基本相等,也就是说,差分电压基本为0。

2.当485总线处于开路状态时,也就是说,某个485收发器与总线断开连接时。此时,由于断开连接的收发器不再对总线产生影响,其余收发器之间的差分电压也基本为0。

当485驱动器输出不足以使A、B产生绝对值大于200mV压差时,此时485总线信号状态已经不能反映驱动器状态,接收器也无法识别正确信号。

3.当485总线出现不确定的状态时,会导致通信错误或失效。例如,如果某个485收发器在不确定状态下认为收到数据0信号,向串口输出低电平,那么对于UART通信来说,这就相当于一个起始位(Start Bit),会引起误判或误码;如果某个485收发器在不确定状态下输出高低电平交替变化,那么对于UART通信来说,就会干扰正常数据,导致UART接收器收到异常数据。

为了防止485总线出现不确定的状态,我们根据这两种异常分析,导致这两种异常的原因都是当收发器处于接收状态时,AB线上无法保持正常电压差。要保持空闲或断线的状态下也能有正确的压差,我们需要在A和B两条线上加上下拉电阻(通常A接上拉电阻,B接下拉电阻),以保证总线在空闲或开路状态下有一个固定的差分电压。如下图所示:


那么,在选择下拉电阻的大小时,我们需要考虑哪些因素呢?主要有以下几个方面:

1.上下拉电阻应该足够小,以保证空闲或开路状态下的差分电压大于+200mV或小于-200mV(根据具体情况选择),从而避免不确定状态。

2.上下拉电阻应该足够大,以减少功耗和热量,同时不影响485收发器的驱动能力和输出电压。

3.上下拉电阻应该与485收发器的输入阻抗、终端电阻、总线长度、节点数等因素相匹配,以保证总线的阻抗匹配和信号完整性。

首先,我们针对收发器处于断线的状态时,此时收发器A、B电压由RU、RT、RD和RIN共同决定,即:


通常我们将RU和RD使用相同的值,则公式可简化为:


此时,我们设芯片内部差分输入电阻RIN=15kΩ、VCC=3.3V且RT=120R,可以算出此时,0Ω≤R≤239Ω,当然只要R≤232.5kΩ都能满足断线情况下A、B线处于数据1状态。

针对于空闲状态,考虑到大部分节点设备都会在A、B线上添加RU和RD电阻,且会在终端上增加RT电阻。如下图所示:


我们根据前面的推导过程可知,不同的只是因为增加节点而增加的输入电阻和上下拉电阻,所以我们根据上述电路可以推导出如下的公式:


在这个公式中,m为带上下拉电阻的节点数量,n为节点数量。总线A端和B端的差值我们定义为最小的200mA,这样我们就可以将这个公式简化为:


有了这个公式就可以根据实际的节点数量来确定上下拉电阻的值。

然而根据这个公式计算出来的结果仅仅只是一个理想值,在实际使用中上下拉电阻一般都是在节点内部确定了的。不同的节点设备,其内部的上下拉电阻可能不同,我们需要考量节点的数量来考量这个电阻的值。要确定上下拉电阻的值还需要考虑驱动芯片的带载能力。不能将上下拉电阻设置得很小。@电路一点通

总之,485总线要在AB线上加上下拉电阻,主要是为了保证总线在空闲或开路状态下有一个固定的差分电压,从而避免不确定状态导致的通信错误或失效。在选择下拉电阻的大小时,需要综合考虑功耗、驱动能力、阻抗匹配等因素,以保证通信的稳定性和可靠性。


—— End ——
免责声明:本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。    


#推荐阅读#   点击蓝色字体即可跳转

  • 单片机按键如何进行硬件消抖?

  • 这元器件切开后,也太惊呆了吧!

  • 如何避免电源设计中的电感饱和

  • 好文分享--LDO基础知识详解(二)

  • 大厂毕业!找不到工作,要降薪去小厂吗?




长按识别二维码关注我


后台回复“加群,管理员拉你加入同行技术交流群。


点个在看让我知道你喜欢今天的内容



一点电子 一点电子,专注于电子硬件技术的学习和分享。分享技术,生活乐趣、职场百态,每天进步一点点!
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 144浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 66浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦