嵌入式软件架构设计中的状态机操作

嵌入式电子 2023-09-16 08:47

关注公众号,加星标,回复1024获取学习资料,每天进步一点点。


状态机基本术语




  • 现态:是指当前所处的状态。

  • 条件:又称为“事件”,当一个条件被满足,将会触发一个动作,或者执行一次状态的迁移。

  • 动作:条件满足后执行的动作。动作执行完毕后,可以迁移到新的状态,也可以仍旧保持原状态。动作不是必需的,当条件满足后,也可以不执行任何动作,直接迁移到新状态。

  • 次态:条件满足后要迁往的新状态。“次态”是相对于“现态”而言的,“次态”一旦被激活,就转变成新的“现态”了。

 

传统有限状态机Fsm实现方法



如图,是一个定时计数器,计数器存在两种状态,一种为设置状态,一种为计时状态。


设置状态

  • “+” “-” 按键对初始倒计时进行设置
  • 当计数值设置完成,点击确认键启动计时 ,即切换到计时状态


计时状态

  • 按下“+” “-” 会进行密码的输入“+”表示1 ,“-”表示输入0 ,密码共有4位
  • 确认键:只有输入的密码等于默认密码,按确认键才能停止计时,否则计时直接到零,并执行相关操作

 

嵌套switch


/***************************************
1.列出所有的状态
***************************************/

typedef enum{
    SETTING,
    TIMING
} STATE_TYPE;

/***************************************
2.列出所有的事件
***************************************/

typedef enum{
    UP_EVT,
    DOWN_EVT,
    ARM_EVT,
    TICK_EVT
} EVENT_TYPE;

/***************************************
3.定义和状态机相关结构
***************************************/

struct  bomb
{
    uint8_t state;
    uint8_t timeout;
    uint8_t code;
    uint8_t defuse_code;
} bomb1;

/***************************************
4.初始化状态机
***************************************/

void bomb1_init(void)
{
    bomb1.state = SETTING;
    bomb1.defuse_code = 6;    //0110 
}

/***************************************
5. 状态机事件派发
***************************************/

void bomb1_fsm_dispatch(EVENT_TYPE evt ,void* param)
{
    switch(bomb1.state)
    {
        case SETTING:
        {
            switch(evt)
            {
                case UP_EVT:    // "+"   按键按下事件
                    if(bomb1.timeout< 60)  
                        ++bomb1.timeout;
                    bsp_display(bomb1.timeout);
                break;
                
                case DOWN_EVT:  // "-"   按键按下事件
                    if(bomb1.timeout > 0)  
                        --bomb1.timeout;
                    bsp_display(bomb1.timeout);
                break;
                
                case ARM_EVT:   // "确认" 按键按下事件
                    bomb1.state = TIMING;
                    bomb1.code  = 0;
                break;
            }
        } 
        break
        
        case TIMING:
        {
            switch(evt)
            {
                case UP_EVT:     // "+"   按键按下事件
                    bomb1.code = (bomb1.code <<1) | 0x01;
                break;
                
                case DOWN_EVT:  // "-"   按键按下事件
                    bomb1.code = (bomb1.code <<1); 
                break;
                
                case ARM_EVT:   // "确认" 按键按下事件
                    if(bomb1.code == bomb1.defuse_code)
                    {
                        bomb1.state = SETTING;
                    }
                    else
                    {
                        bsp_display("bomb!")
                    }
                break;
                
                case TICK_EVT:
                    if(bomb1.timeout)
                    {
                        --bomb1.timeout;
                        bsp_display(bomb1.timeout);
                    }
                    if(bomb1.timeout == 0)
                    {
                        bsp_display("bomb!")
                    }
                break;      
            }   
        }
        break;
    }
}

优点

简单,代码阅读连贯,容易理解

缺点

  • 当状态或事件增多时,代码状态函数需要经常改动,状态事件处理函数会代码量会不断增加

  • 状态机没有进行封装,移植性差。

  • 没有实现状态的进入和退出的操作。进入和退出在状态机中尤为重要:

  • 进入事件:只会在刚进入时触发一次,主要作用是对状态进行必要的初始化

  • 退出事件:只会在状态切换时触发一次 ,主要的作用是清除状态产生的中间参数,为下次进入提供干净环境

 

状态表


二维状态转换表
状态机可以分为状态和事件 ,状态的跃迁都是受事件驱动的,因此可以通过一个二维表格来表示状态的跃迁。

(*) 仅当( code == defuse_code) 时才发生到 setting 的转换。

/*1.列出所有的状态*/
enum
{
    SETTING,
    TIMING,
    MAX_STATE
};

/*2.列出所有的事件*/
enum
{
    UP_EVT,
    DOWN_EVT,
    ARM_EVT,
    TICK_EVT,
    MAX_EVT
};
      
/*3.定义状态表*/
typedef void (*fp_state)(EVT_TYPE evt , void* param);
static  const fp_state  bomb2_table[MAX_STATE][MAX_EVENT] =
{
    {setting_UP, setting_DOWN, setting_ARM, null},
    {setting_UP, setting_DOWN, setting_ARM, timing_TICK}
};
      
struct bomb_t
{
    const fp_state const *state_table;  /* the State-Table */
    uint8_t state;  /* the current active state */
          
    uint8_t timeout;
    uint8_t code;
    uint8_t defuse_code;
};

struct bomb bomb2=
{
    .state_table = bomb2_table;
}

void bomb2_init(void)
{
    bomb2.defuse_code = 6// 0110
    bomb2.state = SETTING;
}
      
void bomb2_dispatch(EVT_TYPE evt , void* param)
{
    fp_state  s = NULL;
    if(evt > MAX_EVT)
    {
        LOG("EVT type error!");
        return;
    }
    s = bomb2.state_table[bomb2.state * MAX_EVT + evt];
    if(s != NULL)
    {
        s(evt , param);
    }
}

/*列出所有的状态对应的事件处理函数*/
void setting_UP(EVT_TYPE evt, void* param)
{
    if(bomb1.timeout< 60)  
        ++bomb1.timeout;
    bsp_display(bomb1.timeout);
}


  • 优点
    • 各个状态面向用户相对独立,增加事件和状态不需要去修改先前已存在的状态事件函数。
    • 可将状态机进行封装,有较好的移植性
函数指针的安全转换 , 利用下面的特性,用户可以扩展带有私有属性的状态机和事件而使用统一的基础状态机接口

typedef void (*Tran)(struct StateTableTag *me, Event const *e);

void Bomb2_setting_ARM (Bomb2 *me, Event const *e);


typedef struct Bomb
{
    struct StateTableTag *me;  //必须为第一个成员
    uint8_t private;
}


  • 缺点

  • 函数粒度太小是最明显的一个缺点,一个状态和一个事件就会产生一个函数,当状态和事件较多时,处理函数将增加很快,在阅读代码时,逻辑分散。

  • 没有实现进入退出动作。

一维状态转换表

实现原理:

typedef void (*fp_action)(EVT_TYPE evt,void* param);
    
/*转换表基础结构*/
struct tran_evt_t
{
    EVT_TYPE evt;
    uint8_t next_state;
};

/*状态的描述*/
struct  fsm_state_t
{
    fp_action  enter_action;  // 进入动作
    fp_action  exit_action;   // 退出动作
    fp_action  action;           
        
    tran_evt_t* tran;    // 转换表
    uint8_t     tran_nb; // 转换表的大小
    const char* name;
}

/*状态表本体*/
#define  ARRAY(x)   x,sizeof(x)/sizeof(x[0])
const struct fsm_state_t state_table[]=
{
    {setting_enter, setting_exit, setting_action, ARRAY(set_tran_evt), "setting" },
    {timing_enter, timing_exit, timing_action, ARRAY(time_tran_evt), "timing" }
};
    
/*构建一个状态机*/
struct fsm
{
    const struct state_t * state_table/* the State-Table */
    uint8_t cur_state;     /* the current active state */
        
    uint8_t timeout;
    uint8_t code;
    uint8_t defuse_code;
} bomb3;
    
/*初始化状态机*/
void bomb3_init(void)
{
    bomb3.state_table = state_table;  // 指向状态表
    bomb3.cur_state = setting;
    bomb3.defuse_code = 8;  //1000
}

/*状态机事件派发*/
void  fsm_dispatch(EVT_TYPE evt, void* param)
{
    tran_evt_t* p_tran = NULL;
        
    /*获取当前状态的转换表*/
    p_tran = bomb3.state_table[bomb3.cur_state]->tran;
        
    /*判断所有可能的转换是否与当前触发的事件匹配*/
    for(uint8_t i=0; i    {
        if(p_tran[i]->evt == evt)  // 事件会触发转换
        {
            if(NULL != bomb3.state_table[bomb3.cur_state].exit_action)
            {
                bomb3.state_table[bomb3.cur_state].exit_action(NULL);  // 执行退出动作
            }
            if(bomb3.state_table[_tran[i]->next_state].enter_action)
            {
                bomb3.state_table[_tran[i]->next_state].enter_action(NULL);  // 执行进入动作
            }
            
            /*更新当前状态*/
            bomb3.cur_state = p_tran[i]->next_state;
        }
        else
        {
            bomb3.state_table[bomb3.cur_state].action(evt, param);
        }
    }
}

/*************************************************************************
setting状态相关
************************************************************************/

void setting_enter(EVT_TYPE evt, void* param)
{
        
}
void setting_exit(EVT_TYPE evt, void* param)
{
        
}
void setting_action(EVT_TYPE evt, void* param)
{
        
}
tran_evt_t set_tran_evt[] =
{
    {ARM , timing},
}
/*timing 状态相关*/


  • 优点
    • 各个状态面向用户相对独立,增加事件和状态不需要去修改先前已存在的状态事件函数。
    • 实现了状态的进入和退出
    • 容易根据状态跃迁图来设计 (状态跃迁图列出了每个状态的跃迁可能,也就是这里的转换表)
    • 实现灵活,可实现复杂逻辑,如上一次状态,增加监护条件来减少事件的数量。可实现非完全事件驱动
  • 缺点

    • 函数粒度较小(比二维小且增长慢),可以看到,每一个状态需要至少3个函数,还需要列出所有的转换关系。

 

QP嵌入式实时框架


特点

  • 事件驱动型编程
    • 好莱坞原则:和传统的顺序式编程方法例如“超级循环”,或传统的RTOS 的任务不同。绝大多数的现代事件驱动型系统根据好莱坞原则被构造,(Don’t call me; I’ll call you.)

  • 面向对象
    • 类和单一继承

  • 工具
    • QM :一个通过UML类图来描述状态机的软件,并且可以自动生成C代码

    • QS软件追踪工具



 

QEP 实现有限状态机 Fsm

  • 实现

/* qevent.h ----------------------------------------------------------------*/
typedef struct QEventTag 
{  
    QSignal sig;     
    uint8_t dynamic_;  
} QEvent;

/* qep.h -------------------------------------------------------------------*/
typedef uint8_t QState;  /* status returned from a state-handler function */
typedef QState (*QStateHandler) (void *me, QEvent const *e); /* argument list */
typedef struct QFsmTag  /* Finite State Machine */

    QStateHandler state;  /* current active state */
} QFsm;
      
#define QFsm_ctor(me_, initial_) ((me_)->state = (initial_))
void QFsm_init (QFsm *me, QEvent const *e);
void QFsm_dispatch(QFsm *me, QEvent const *e);
      
#define Q_RET_HANDLED ((QState)0)
#define Q_RET_IGNORED ((QState)1)
#define Q_RET_TRAN    ((QState)2)
#define Q_HANDLED()   (Q_RET_HANDLED)
#define Q_IGNORED()   (Q_RET_IGNORED)
      
#define Q_TRAN(target_) (((QFsm *)me)->state = (QStateHandler)   (target_),Q_RET_TRAN)
      
enum QReservedSignals
{
    Q_ENTRY_SIG = 1
    Q_EXIT_SIG, 
    Q_INIT_SIG, 
    Q_USER_SIG 
};
      
/* file qfsm_ini.c ---------------------------------------------------------*/
#include "qep_port.h"  /* the port of the QEP event processor */
#include "qassert.h"  /* embedded systems-friendly assertions */
void QFsm_init(QFsm *me, QEvent const *e) 
{
    (*me->state)(me, e);  /* execute the top-most initial transition */
    /* enter the target */
    (void)(*me->state)(me , &QEP_reservedEvt_[Q_ENTRY_SIG]);
}

/* file qfsm_dis.c ---------------------------------------------------------*/
void QFsm_dispatch(QFsm *me, QEvent const *e)
{
    QStateHandler s = me->state;  /* save the current state */
    QState r = (*s)(me, e);  /* call the event handler */
    if (r == Q_RET_TRAN)  /* transition taken? */
    {
        (void)(*s)(me, &QEP_reservedEvt_[Q_EXIT_SIG]); /* exit the source */
        (void)(*me->state)(me, &QEP_reservedEvt_[Q_ENTRY_SIG]);/*enter target*/
    }
}

// 实现上面定时器例子
#include "qep_port.h" /* the port of the QEP event processor */
#include "bsp.h"      /* board support package */
      
enum BombSignals  /* all signals for the Bomb FSM */

    UP_SIG = Q_USER_SIG,
    DOWN_SIG,
    ARM_SIG,
    TICK_SIG
};

typedef struct TickEvtTag 
{
    QEvent super;      /* derive from the QEvent structure */
    uint8_t fine_time; /* the fine 1/10 s counter */
} TickEvt;
      
typedef struct Bomb4Tag 
{
    QFsm super;      /* derive from QFsm */
    uint8_t timeout; /* number of seconds till explosion */
    uint8_t code;    /* currently entered code to disarm the bomb */
    uint8_t defuse;  /* secret defuse code to disarm the bomb */
} Bomb4;
      
void Bomb4_ctor (Bomb4 *me, uint8_t defuse);
QState Bomb4_initial(Bomb4 *me, QEvent const *e);
QState Bomb4_setting(Bomb4 *me, QEvent const *e);
QState Bomb4_timing (Bomb4 *me, QEvent const *e);
/*--------------------------------------------------------------------------*/
/* the initial value of the timeout */
#define INIT_TIMEOUT 10
/*..........................................................................*/
void Bomb4_ctor(Bomb4 *me, uint8_t defuse) {
    QFsm_ctor_(&me->super, (QStateHandler)&Bomb4_initial);
    me->defuse = defuse;  /* the defuse code is assigned at instantiation */
}
/*..........................................................................*/
QState Bomb4_initial(Bomb4 *me, QEvent const *e) 
{
    (void)e;
    me->timeout = INIT_TIMEOUT;
    return Q_TRAN(&Bomb4_setting);
}
/*..........................................................................*/
QState Bomb4_setting(Bomb4 *me, QEvent const *e) 
{
    switch (e->sig)
    {
        case UP_SIG:
        {
            if (me->timeout < 60
            {
                ++me->timeout;
                BSP_display(me->timeout);
            }
            return Q_HANDLED();
        }
        
        case DOWN_SIG: 
        {
            if (me->timeout > 1
            {
                --me->timeout;
                BSP_display(me->timeout);
            }
            return Q_HANDLED();
        }

        case ARM_SIG: 
        {
            return Q_TRAN(&Bomb4_timing); /* transition to "timing" */
        }
    }
    return Q_IGNORED();
}
      
/*..........................................................................*/
void Bomb4_timing(Bomb4 *me, QEvent const *e) 
{
    switch (e->sig) 
    {
        case Q_ENTRY_SIG: 
        {
            me->code = 0/* clear the defuse code */
            return Q_HANDLED();
        }
        
        case UP_SIG: 
        {
            me->code <<= 1;
            me->code |= 1;
            return Q_HANDLED();
        }
        
        case DOWN_SIG: 
        {
            me->code <<= 1;
            return Q_HANDLED();
        }
        
        case ARM_SIG: 
        {
            if (me->code == me->defuse) 
            {
                return Q_TRAN(&Bomb4_setting);
            }
            return Q_HANDLED();
        }
        
        case TICK_SIG: 
        {
            if (((TickEvt const *)e)->fine_time == 0
            {
                --me->timeout;
                BSP_display(me->timeout);
                if (me->timeout == 0
                {
                    BSP_boom(); /* destroy the bomb */
                }
            }
            return Q_HANDLED();
        }
    }
    return Q_IGNORED();
}


  • 优点

    • 采用面向对象的设计方法,很好的移植性

    • 实现了进入退出动作

    • 合适的粒度,且事件的粒度可控

    • 状态切换时通过改变指针,效率高

    • 可扩展成为层次状态机

  • 缺点
    • 对事件的定义以及事件粒度的控制是设计的最大难点,如串口接收到一帧数据,这些变量的更新单独作为某个事件,还是串口收到数据作为一个事件。再或者显示屏,如果使用此种编程方式,如何设计事件。

 

QP 实现层次状态机 Hsm简介


初始化:

初始化层次状态机的实现:在初始化时,用户所选取的状态永远是最底层的状态,如上图,我们在计算器开机后,应该进入的是开始状态。
这就涉及到一个问题,由最初top(顶状态)到begin 是有一条状态切换路径的,当我们设置状态为 begin,如何搜索这条路径成为关键(知道了路径才能正确的进入begin,要执行路径中过渡状态的进入和退出事件)
void QHsm_init(QHsm *me, QEvent const *e) 
{
    Q_ALLEGE((*me->state)(me, e) == Q_RET_TRAN);
    t = (QStateHandler)&QHsm_top; /* HSM starts in the top state */
    do 
    {  /* drill into the target... */
        QStateHandler path[QEP_MAX_NEST_DEPTH_];
        int8_t ip = (int8_t)0/* transition entry path index */
        path[0] = me->state; /* 这里的状态为begin */
            
        /*通过执行空信号,从底层状态找到顶状态的路径*/
        (void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_);
        while (me->state != t) 
        {
            path[++ip] = me->state;
            (void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_);
        }
        /*切换为begin*/
        me->state = path[0]; /* restore the target of the initial tran. */
        /* 钻到最底层的状态,执行路径中的所有进入事件 */
        Q_ASSERT(ip < (int8_t)QEP_MAX_NEST_DEPTH_);
        do 
        {  /* retrace the entry path in reverse (desired) order... */
            QEP_ENTER_(path[ip]); /* enter path[ip] */
        } 
        while ((--ip) >= (int8_t)0);
            
        t = path[0]; /* current state becomes the new source */
    } 
    while (QEP_TRIG_(t, Q_INIT_SIG) == Q_RET_TRAN);
    me->state = t;
}

t = path[0]; /* target of the transition */
if (s == t) 
{  /* (a) check source==target (transition to self) */
    QEP_EXIT_(s) /* exit the source */
    ip = (int8_t)0/* enter the target */
}
else 
{
    (void)QEP_TRIG_(t, QEP_EMPTY_SIG_); /* superstate of target */
    t = me->state;
    if (s == t) 
    {  /* (b) check source==target->super */
        ip = (int8_t)0/* enter the target */
    }
    else 
    {
        (void)QEP_TRIG_(s, QEP_EMPTY_SIG_); /* superstate of src */
        /* (c) check source->super==target->super */
        if(me->state == t) 
        {
            QEP_EXIT_(s) /* exit the source */
            ip = (int8_t)0/* enter the target */
        }
        else 
        {
            /* (d) check source->super==target */
            if (me->state == path[0]) 
            {
                QEP_EXIT_(s) /* exit the source */
            }
            else 
            {  /* (e) check rest of source==target->super->super..
                * and store the entry path along the way */

                 ....


 

QP实时框架的组成


内存管理

使用内存池,对于低性能mcu,内存极为有限,引入内存管理主要是整个架构中,是以事件作为主要的任务通信手段,且事件是带参数的。可能相同类型的事件会多次触发,而事件处理完成后,需要清除事件,无法使用静态的事件,因此是有必要为不同事件创建内存池的。

对于不同块大小的内存池,需要考虑的是每个块的起始地址对齐问题。在进行内存池初始化时,我们是根据 blocksize+header 大小来进行划分内存池的。假设一个 2 字节的结构,如果以 2 来进行划分,假设 mcu 4 字节对齐,那么将有一半的结构起始地址无法对齐,这时需要为每个块预留空间,保证每个块的对齐。


事件队列
  • 每一个活动对象维护一个事件队列,事件都是由基础事件派生的,不同类型的事件只需要将其基础事件成员添加到活动对象的队列中即可,最终在取出的时候通过一个强制转换便能获得附加的参数。


事件派发

  • 直接事件发送
    • QActive_postLIFO()
  • 发行订阅事件发送
    • 竖轴表示信号(为事件的基类)
    • 活动对象支持64个优先级,每一个活动对象要求拥有唯一优先级
    • 通过优先级的bit位来表示某个事件被哪些活动对象订阅,并在事件触发后根据优先级为活动对象派发事件。

定时事件
  • 非有序链表

  • 合作式调度器QV


  • 可抢占式调度器QK

 

QP nano 的简介


  • 完全支持层次式状态嵌套,包括在最多4 层状态嵌套情况下,对任何状态转换拓扑的可保证的进入/ 退出动作

  • 支持高达8 个并发执行的,可确定的,线程安全的事件队列的活动对象57

  • 支持一个字节宽( 255 个信号)的信号,和一个可伸缩的参数,它可被配置成0 (没有参数), 1 , 2 或4 字节

  • 使用先进先出FIFO排队策略的直接事件派发机制

  • 每个活动对象有一个一次性时间事件(定时器),它的可配置动态范围是0(没有时间事件) , 1 , 2 或4 字节

  • 内建的合作式 vanilla 内核

  • 内建的名为 QK-nano 的可抢占型 RTC 内核

  • 带有空闲回调函数的低功耗架构,用来方便的实现节省功耗模式。

  • 在代码里为流行的低端CPU架构的C编译器的非标准扩展进行了准备(例如,在代码空间分配常数对象,可重入函数,等等)

  • 基于断言的错误处理策略

  • 代码风格






原文:http://t.csdn.cn/VZC0X

文章来源于网络,版权归原作者所有,如有侵权,请联系删除。


关注公众号,加星标,回复1024获取学习资料,每天进步一点点。


声明:

本号原创、转载的文章、图片等版权归原作者所有,如有侵权,请联系删除。

关注、点赞、在看、转发,支持优质内容! 

评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦