电机运动控制算法总结

strongerHuang 2023-09-14 08:20

关注+星标公众,不错过精彩内容

转自 | 小麦大叔


搞过电机或运动控制的小伙伴应该知道,S曲线很重要,下面一张动图对比一下,你就知道S曲线的好处:

今天就给大家描述一下S曲线规划算法


1 前言

S形加减速的最重要特征是该算法的加速度/减速度曲线的形状如字母 S。S形加减速的速度曲线平滑 ,从而能够减少对控制过程中的冲击,并使插补过程具有柔性 [^1]。由于T形曲线在加速到匀速的切换过程中,实际中存在较大过冲,因此这里对比一下T曲线和7段S曲线的实际过程;

  • T形加速 -> 匀速 -> 减速
  • S形加加速() -> 匀加速() -> 减加速()-> 匀速()-> 加减速()-> 匀减速()-> 减减速()

上文在加速这块的文字描述可能读起来起来有点绕,下面看图:

2 理论分析

由于S曲线在加减速的过程中,其加速度是变化的,因此这里引入了新的一个变量 ,即加加速度

因此对应上图的7段S速度曲线中,规定最大加速为,最小加速度为,则加速度的关系;

  • 加加速():逐渐增大;
    • 此时
  • 匀加速():达到最大;
    • 此时
  • 减加速():逐渐减小;
    • 此时
  • 匀速():不变化;
    • 此时
  • 加减速(): 逐渐增大;
    • 此时
  • 匀减速(): 达到最大;
    • 此时 
  • 减减速(): 逐渐减小;
    • 此时

为加速度的绝对值;其中

所以通常需要确定三个最基本的系统参数 :系统最大速度 ,最大加速度a_{max} ,加加速度,就可以可确定整个运行过程[^2] ;

  • 最大速度:反映了系统的最大运行能力 ;
  • 最大加速度:反映了系统的最大加减速能力 ;
  • 加加速度:反映了系统的柔性;
    • 柔性越大,过冲越大,运行时间越短;
    • 柔性越小,过冲越小,运行时间越长;

2.1 加速度时间关系方程

整个加速度变化的过程具体如下图所示;

再次强调一下 的关系,另外这里再引入变量

比如,当前时刻 ,即 位于区间 ,则如果将 作为初始点,则 相对于时刻的时间,则有:

下面可以得到加速度与时间的关系函数,具体如下:

根据 ① 式,将 代入 ② 式可以得到:

上式中

2.2 速度时间关系方程

速度和加速度满足 ;加加速度和速度的关系满足:

结合加速度时间关系并结合② 式可以得到速度曲线关系,具体关系如下图所示;

进一步简化可以得到:

2.3 位移时间关系方程

位移 和加加速度 直接满足关系如下:

简单推导

因此可以得到:

积分忘的差不多了,回去再复习一下;

最终位移的方程如下所示;

3 程序实现的思路

正如前面所提到的,S曲线规划需要确定三个最基本的系统参数 :系统最大速度 ,最大加速度a_{max} ,加加速度,这样就可以确定这个运行过程。这里有一个隐性的条件,就是在运行的过程中可以达到最大速度,这样才是完整的7段S曲线,另外这里还有一些中间参数:

  • ,因此有
  • 加加速度
  • ,用户给定整个运行过程所需要的时间;

但是通常实际过程中关心

3.1 推导

理想状态假设存在 则推导过程如下:

因此可以得到:

简化之后得到:

根据②式可知:

最终得到:

下面可以根据位移时间关系方程进行离散化的程序编写。

假设可以到达最大速度,且用户给定了整个过程运行时间,则 的推导如下:

简化上式可以得到:

根据 代入上式可得:

3.2 的推导

这时候还剩下需要计算,通过已量 可以推导出来;首先位移之间满足关系如下:

其中加速区长度为 ;其中减速区长度为

具体推导;[^2] 前面提到过,因此在=0的时候,则

这里简单推导一下:

根据④,⑤最终简化得到

:为运行的总时间:为运行的总路程

详细推导过程如下:

因为:

因为:

所以,简化得到:

所以可以得到:

因为:

将其代入可以得到:

简化得到最终结果

4 matlab 程序

matlab程序亲测可以运行,做了简单的修改, 因为这里直接给定了整个运行过程的时间,所以需要在SCurvePara函数中求出加加速度 的值,路程为 1:

SCurvePara

 function [Tf1,V,A,J,T] = SCurvePara(Tf, v, a)
 T = zeros(1,7);
for i=1:1000
    % 加加速度 J
    J = (a^2 * v) / (Tf*v*a - v^2 - a);
    % Tk
    T(1) = a / J;
    T(2) = v / a - a / J; % t2 = v / a - t1;
    T(3) = T(1);
    T(4) = Tf - 2 * a / J - 2 * v / a;    % t4 = Tf - 4*t1 - 2*t2;
    T(5) = T(3);
    T(6) = T(2);
    T(7) = T(1);
    % 根据T2T4判断S曲线的类型
    if T(2) < -1e-6
        a = sqrt(v*J);
        display('t2<0');
    elseif T(4) < -1e-6
        v = Tf*a/2 - a*a/J;
        display('t4<0');
    elseif J < -1e-6
        Tf = (v^2 + a) / (v*a) + 1e-1;
        display('J<0');
    else
        break;
    end
end

 A = a;
 V = v;
 Tf1 = Tf;
 end

SCurveScaling

 function s = SCurveScaling(t,V,A,J,T,Tf)
J = (A^2 * V) / (Tf*V*A - V^2 - A);
T(1) = A / J;
T(2) = V / A - A / J; % T(2) = V / A - T(1);
T(3) = T(1);
T(4) = Tf - 2 * A / J - 2 * V / A;    % T(4) = Tf - 4*T(1) - 2*T(2);
T(5) = T(3);
T(6) = T(2);
T(7) = T(1);
%%
if (t >= 0 && t <= T(1))
    s = 1/6 * J * t^3;
elseif (  t > T(1) && t <= T(1)+T(2) )
    dt = t - T(1);
    s = 1/2 * A * dt^2 + A^2/(2*J) * dt...
        + A^3/(6*J^2);
elseif ( t > T(1)+T(2) && t <= T(1)+T(2)+T(3) )
     dt = t - T(1) - T(2);
     s = -1/6*J*dt^3 + 1/2*A*dt^2 + (A*T(2) + A^2/(2*J))*dt ...
         + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
elseif ( t > T(1)+T(2)+T(3) && t <= T(1)+T(2)+T(3)+T(4) )
     dt = t - T(1) - T(2) - T(3);
     s = V*dt ...
         +  (-1/6*J*T(3)^3) + 1/2*A*T(3)^2 + (A*T(2) + A^2/(2*J))*T(3) + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
elseif ( t > T(1)+T(2)+T(3)+T(4) && t <= T(1)+T(2)+T(3)+T(4)+T(5) )
     t_temp = Tf - t
     dt = t_temp - T(1) - T(2);
     s = -1/6*J*dt^3 + 1/2*A*dt^2 + (A*T(2) + A^2/(2*J))*dt ...
         + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
     s = 1 - s;
elseif ( t > T(1)+T(2)+T(3)+T(4)+T(5) && t <= T(1)+T(2)+T(3)+T(4)+T(5)+T(6) )
     t_temp = Tf - t
     dt = t_temp - T(1);
     s = 1/2 * A * dt^2 + A^2/(2*J) * dt + A^3/(6*J^2);
     s = 1 - s;  
elseif ( t > T(1)+T(2)+T(3)+T(4)+T(5)+T(6) && t <= T(1)+T(2)+T(3)+T(4)+T(5)+T(6)+T(7) + 1e5 )
     t_temp = Tf - t
     s = 1/6 * J * t_temp^3;
     s = 1 - s;     
end
 
end

测试的代码如下:TEST

%%
N = 500;

ThetaStart = 0; %起始位置
ThetaEnd = 90; %最终位置
VTheta = 90;    %1   速度
ATheta = 135;   %1.5   加速度
Tf = 1.8;  % 总行程时间

v = VTheta/(ThetaEnd - ThetaStart);
a = ATheta/(ThetaEnd - ThetaStart);
v = abs(v);
a = abs(a);


Theta = zeros(1,N);
s = zeros(1,N);
sd = zeros(1,N);
sdd = zeros(1,N);

[TF,V,A,J,T] = SCurvePara(Tf, v, a);
display(J, 'J:');
display(TF,'Tf:');
display(V,'v:');
display(A, 'da:');

display(TF-Tf,'dTf:');
display(V-v,'dv:');
display(A-a, 'da:');

t=linspace(0,TF,N);
dt = t(2) - t(1);
for i = 1:N
    if i == N
        a = a;
    end
    s(i) = SCurveScaling(t(i),V,A,J,T,TF);
    Theta(i) = ThetaStart + s(i) * (ThetaEnd - ThetaStart);
    if i>1
        sd(i-1) = (s(i) - s(i-1)) / dt;
    end
    if i>2
        sdd(i-2) = (sd(i-1) - sd(i-2)) / dt;
    end
end

subplot(3,1,1);
legend('Theta');
xlabel('t');
subplot(3,1,1);
plot(t,s)
legend('位移');
xlabel('t');
title('位置曲线');

subplot(3,1,2);
plot(t,sd);
legend('速度');
xlabel('t');
title('速度曲线');

subplot(3,1,3);
plot(t,sdd);
legend('加速度');
xlabel('t');
title('加速度曲线');

看到最终仿真结果和预期相同;

最后再看一下T形和S形速度曲线规划的效果对比:


5 总结

本文只对7段的S曲线规划做了详细的推导和介绍,matlab中的程序对于4段和5段都有做实现,很多是在理想情况下进行推导的,初始速度默认为0,终止速度也为0,并且假设加减速区域相互对称。最终运行结果符合预期效果。

6 参考

[1]:陈友东  魏洪兴  王琦魁.数控系统的直线和 S 形加减速离散算法[D].北京:中国机械工程,2010.
[2]:郭新贵  李从心 S 曲线加减速算法研究 上海交通大学国家模具 CAD 工程研究中心 , 200030

------------ END ------------


●专栏《嵌入式工具
●专栏《嵌入式开发》
●专栏《Keil教程》
●嵌入式专栏精选教程

关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。




点击“阅读原文”查看更多分享。
strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 93浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦