电机运动控制算法总结

strongerHuang 2023-09-14 08:20

关注+星标公众,不错过精彩内容

转自 | 小麦大叔


搞过电机或运动控制的小伙伴应该知道,S曲线很重要,下面一张动图对比一下,你就知道S曲线的好处:

今天就给大家描述一下S曲线规划算法


1 前言

S形加减速的最重要特征是该算法的加速度/减速度曲线的形状如字母 S。S形加减速的速度曲线平滑 ,从而能够减少对控制过程中的冲击,并使插补过程具有柔性 [^1]。由于T形曲线在加速到匀速的切换过程中,实际中存在较大过冲,因此这里对比一下T曲线和7段S曲线的实际过程;

  • T形加速 -> 匀速 -> 减速
  • S形加加速() -> 匀加速() -> 减加速()-> 匀速()-> 加减速()-> 匀减速()-> 减减速()

上文在加速这块的文字描述可能读起来起来有点绕,下面看图:

2 理论分析

由于S曲线在加减速的过程中,其加速度是变化的,因此这里引入了新的一个变量 ,即加加速度

因此对应上图的7段S速度曲线中,规定最大加速为,最小加速度为,则加速度的关系;

  • 加加速():逐渐增大;
    • 此时
  • 匀加速():达到最大;
    • 此时
  • 减加速():逐渐减小;
    • 此时
  • 匀速():不变化;
    • 此时
  • 加减速(): 逐渐增大;
    • 此时
  • 匀减速(): 达到最大;
    • 此时 
  • 减减速(): 逐渐减小;
    • 此时

为加速度的绝对值;其中

所以通常需要确定三个最基本的系统参数 :系统最大速度 ,最大加速度a_{max} ,加加速度,就可以可确定整个运行过程[^2] ;

  • 最大速度:反映了系统的最大运行能力 ;
  • 最大加速度:反映了系统的最大加减速能力 ;
  • 加加速度:反映了系统的柔性;
    • 柔性越大,过冲越大,运行时间越短;
    • 柔性越小,过冲越小,运行时间越长;

2.1 加速度时间关系方程

整个加速度变化的过程具体如下图所示;

再次强调一下 的关系,另外这里再引入变量

比如,当前时刻 ,即 位于区间 ,则如果将 作为初始点,则 相对于时刻的时间,则有:

下面可以得到加速度与时间的关系函数,具体如下:

根据 ① 式,将 代入 ② 式可以得到:

上式中

2.2 速度时间关系方程

速度和加速度满足 ;加加速度和速度的关系满足:

结合加速度时间关系并结合② 式可以得到速度曲线关系,具体关系如下图所示;

进一步简化可以得到:

2.3 位移时间关系方程

位移 和加加速度 直接满足关系如下:

简单推导

因此可以得到:

积分忘的差不多了,回去再复习一下;

最终位移的方程如下所示;

3 程序实现的思路

正如前面所提到的,S曲线规划需要确定三个最基本的系统参数 :系统最大速度 ,最大加速度a_{max} ,加加速度,这样就可以确定这个运行过程。这里有一个隐性的条件,就是在运行的过程中可以达到最大速度,这样才是完整的7段S曲线,另外这里还有一些中间参数:

  • ,因此有
  • 加加速度
  • ,用户给定整个运行过程所需要的时间;

但是通常实际过程中关心

3.1 推导

理想状态假设存在 则推导过程如下:

因此可以得到:

简化之后得到:

根据②式可知:

最终得到:

下面可以根据位移时间关系方程进行离散化的程序编写。

假设可以到达最大速度,且用户给定了整个过程运行时间,则 的推导如下:

简化上式可以得到:

根据 代入上式可得:

3.2 的推导

这时候还剩下需要计算,通过已量 可以推导出来;首先位移之间满足关系如下:

其中加速区长度为 ;其中减速区长度为

具体推导;[^2] 前面提到过,因此在=0的时候,则

这里简单推导一下:

根据④,⑤最终简化得到

:为运行的总时间:为运行的总路程

详细推导过程如下:

因为:

因为:

所以,简化得到:

所以可以得到:

因为:

将其代入可以得到:

简化得到最终结果

4 matlab 程序

matlab程序亲测可以运行,做了简单的修改, 因为这里直接给定了整个运行过程的时间,所以需要在SCurvePara函数中求出加加速度 的值,路程为 1:

SCurvePara

 function [Tf1,V,A,J,T] = SCurvePara(Tf, v, a)
 T = zeros(1,7);
for i=1:1000
    % 加加速度 J
    J = (a^2 * v) / (Tf*v*a - v^2 - a);
    % Tk
    T(1) = a / J;
    T(2) = v / a - a / J; % t2 = v / a - t1;
    T(3) = T(1);
    T(4) = Tf - 2 * a / J - 2 * v / a;    % t4 = Tf - 4*t1 - 2*t2;
    T(5) = T(3);
    T(6) = T(2);
    T(7) = T(1);
    % 根据T2T4判断S曲线的类型
    if T(2) < -1e-6
        a = sqrt(v*J);
        display('t2<0');
    elseif T(4) < -1e-6
        v = Tf*a/2 - a*a/J;
        display('t4<0');
    elseif J < -1e-6
        Tf = (v^2 + a) / (v*a) + 1e-1;
        display('J<0');
    else
        break;
    end
end

 A = a;
 V = v;
 Tf1 = Tf;
 end

SCurveScaling

 function s = SCurveScaling(t,V,A,J,T,Tf)
J = (A^2 * V) / (Tf*V*A - V^2 - A);
T(1) = A / J;
T(2) = V / A - A / J; % T(2) = V / A - T(1);
T(3) = T(1);
T(4) = Tf - 2 * A / J - 2 * V / A;    % T(4) = Tf - 4*T(1) - 2*T(2);
T(5) = T(3);
T(6) = T(2);
T(7) = T(1);
%%
if (t >= 0 && t <= T(1))
    s = 1/6 * J * t^3;
elseif (  t > T(1) && t <= T(1)+T(2) )
    dt = t - T(1);
    s = 1/2 * A * dt^2 + A^2/(2*J) * dt...
        + A^3/(6*J^2);
elseif ( t > T(1)+T(2) && t <= T(1)+T(2)+T(3) )
     dt = t - T(1) - T(2);
     s = -1/6*J*dt^3 + 1/2*A*dt^2 + (A*T(2) + A^2/(2*J))*dt ...
         + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
elseif ( t > T(1)+T(2)+T(3) && t <= T(1)+T(2)+T(3)+T(4) )
     dt = t - T(1) - T(2) - T(3);
     s = V*dt ...
         +  (-1/6*J*T(3)^3) + 1/2*A*T(3)^2 + (A*T(2) + A^2/(2*J))*T(3) + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
elseif ( t > T(1)+T(2)+T(3)+T(4) && t <= T(1)+T(2)+T(3)+T(4)+T(5) )
     t_temp = Tf - t
     dt = t_temp - T(1) - T(2);
     s = -1/6*J*dt^3 + 1/2*A*dt^2 + (A*T(2) + A^2/(2*J))*dt ...
         + 1/2*A*T(2)^2 + A^2/(2*J)*T(2) + A^3/(6*J^2);
     s = 1 - s;
elseif ( t > T(1)+T(2)+T(3)+T(4)+T(5) && t <= T(1)+T(2)+T(3)+T(4)+T(5)+T(6) )
     t_temp = Tf - t
     dt = t_temp - T(1);
     s = 1/2 * A * dt^2 + A^2/(2*J) * dt + A^3/(6*J^2);
     s = 1 - s;  
elseif ( t > T(1)+T(2)+T(3)+T(4)+T(5)+T(6) && t <= T(1)+T(2)+T(3)+T(4)+T(5)+T(6)+T(7) + 1e5 )
     t_temp = Tf - t
     s = 1/6 * J * t_temp^3;
     s = 1 - s;     
end
 
end

测试的代码如下:TEST

%%
N = 500;

ThetaStart = 0; %起始位置
ThetaEnd = 90; %最终位置
VTheta = 90;    %1   速度
ATheta = 135;   %1.5   加速度
Tf = 1.8;  % 总行程时间

v = VTheta/(ThetaEnd - ThetaStart);
a = ATheta/(ThetaEnd - ThetaStart);
v = abs(v);
a = abs(a);


Theta = zeros(1,N);
s = zeros(1,N);
sd = zeros(1,N);
sdd = zeros(1,N);

[TF,V,A,J,T] = SCurvePara(Tf, v, a);
display(J, 'J:');
display(TF,'Tf:');
display(V,'v:');
display(A, 'da:');

display(TF-Tf,'dTf:');
display(V-v,'dv:');
display(A-a, 'da:');

t=linspace(0,TF,N);
dt = t(2) - t(1);
for i = 1:N
    if i == N
        a = a;
    end
    s(i) = SCurveScaling(t(i),V,A,J,T,TF);
    Theta(i) = ThetaStart + s(i) * (ThetaEnd - ThetaStart);
    if i>1
        sd(i-1) = (s(i) - s(i-1)) / dt;
    end
    if i>2
        sdd(i-2) = (sd(i-1) - sd(i-2)) / dt;
    end
end

subplot(3,1,1);
legend('Theta');
xlabel('t');
subplot(3,1,1);
plot(t,s)
legend('位移');
xlabel('t');
title('位置曲线');

subplot(3,1,2);
plot(t,sd);
legend('速度');
xlabel('t');
title('速度曲线');

subplot(3,1,3);
plot(t,sdd);
legend('加速度');
xlabel('t');
title('加速度曲线');

看到最终仿真结果和预期相同;

最后再看一下T形和S形速度曲线规划的效果对比:


5 总结

本文只对7段的S曲线规划做了详细的推导和介绍,matlab中的程序对于4段和5段都有做实现,很多是在理想情况下进行推导的,初始速度默认为0,终止速度也为0,并且假设加减速区域相互对称。最终运行结果符合预期效果。

6 参考

[1]:陈友东  魏洪兴  王琦魁.数控系统的直线和 S 形加减速离散算法[D].北京:中国机械工程,2010.
[2]:郭新贵  李从心 S 曲线加减速算法研究 上海交通大学国家模具 CAD 工程研究中心 , 200030

------------ END ------------


●专栏《嵌入式工具
●专栏《嵌入式开发》
●专栏《Keil教程》
●嵌入式专栏精选教程

关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。




点击“阅读原文”查看更多分享。
strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论 (0)
  •   卫星图像智能测绘系统:地理空间数据处理的创新引擎   卫星图像智能测绘系统作为融合卫星遥感、地理信息系统(GIS)、人工智能(AI)以及大数据分析等前沿技术的综合性平台,致力于达成高精度、高效率的地理空间数据采集、处理与应用目标。借助自动化、智能化的技术路径,该系统为国土资源管理、城市规划、灾害监测、环境保护等诸多领域输送关键数据支撑。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉北京五木恒润卫星图像智能测绘系统。这些成功案例为卫星
    华盛恒辉l58ll334744 2025-04-08 16:19 88浏览
  • 文/Leon编辑/侯煜‍就在小米SU7因高速交通事故、智驾性能受到质疑的时候,另一家中国领先的智驾解决方案供应商华为,低调地进行了一场重大人事变动。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)4月4日上午,有网友发现余承东的职务发生了变化,华为官网、其个人微博认证信息为“常务董事,终端BG董事长”,不再包括“智能汽车解决方案BU董事长”。余承东的确不再兼任华为车BU董事长,但并非完全脱离华为的汽车业务,而是聚焦鸿蒙智行。据悉,华为方面寻求将车BU独立出去,但鸿蒙智行仍留在华为终端BG部门。
    华尔街科技眼 2025-04-09 15:28 98浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 159浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 194浏览
  • HDMI从2.1版本开始采用FRL传输模式,和2.0及之前的版本不同。两者在物理层信号上有所区别,这就需要在一些2.1版本的电路设计上增加匹配电路,使得2.1版本的电路能够向下兼容2.0及之前版本。2.1版本的信号特性下面截取自2.1版本规范定义,可以看到2.1版本支持直流耦合和交流耦合,其共模电压和AVCC相关,信号摆幅在400mV-1200mV2.0及之前版本的信号特性HDMI2.0及之前版本采用TMDS信号物理层,其结构和参数如下:兼容设计根据以上规范定义,可以看出TMDS信号的共模电压范
    durid 2025-04-08 19:01 175浏览
  • ## DL/T645-2007* 帧格式:* 帧起始字符:68H* 地址域:A0 A1 A2 A3 A4 A5* 帧起始字符:68H* 控制码:1字节* 主站:* 13H:请求读电能表通信地址* 11H:请求读电能表数据* 1CH:请求跳闸、合闸* 从站:* 91H:正常应答读电能表* 9CH:正常应答跳闸、合闸* 数据域长度:1字节* 数据域:DI0 DI1 DI2 DI3* 发送方:每字节+33H* 接收方:每字节-33H* 数据标识:* 电能量* 最大需量及发生时间* 变量* 事件记录*
    四毛打印店 2025-04-09 10:53 70浏览
  •   卫星图像智能测绘系统全面解析   一、系统概述   卫星图像智能测绘系统是基于卫星遥感技术、图像处理算法与人工智能(AI)技术的综合应用平台,旨在实现高精度、高效率的地理空间数据获取、处理与分析。该系统通过融合多源卫星数据(如光学、雷达、高光谱等),结合AI驱动的智能算法,实现自动化、智能化的测绘流程,广泛应用于城市规划、自然资源调查、灾害监测等领域。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星图像智能测绘系统
    华盛恒辉l58ll334744 2025-04-08 15:04 105浏览
  •   物质扩散与污染物监测系统软件:多领域环境守护的智能中枢   北京华盛恒辉物质扩散与污染物监测系统软件,作为一款融合了物质扩散模拟、污染物监测、数据分析以及可视化等多元功能的综合性工具,致力于为环境科学、公共安全、工业生产等诸多领域给予强有力的技术支撑。接下来,将从功能特性、应用场景、技术实现途径、未来发展趋势等多个维度对这类软件展开详尽介绍。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这
    华盛恒辉l58ll334744 2025-04-09 14:54 122浏览
  • 文/郭楚妤编辑/cc孙聪颖‍伴随贸易全球化的持续深入,跨境电商迎来蓬勃发展期,物流行业 “出海” 成为不可阻挡的必然趋势。加之国内快递市场渐趋饱和,存量竞争愈发激烈。在此背景下,国内头部快递企业为突破发展瓶颈,寻求新的增长曲线,纷纷将战略目光投向海外市场。2024 年,堪称中国物流企业出海进程中的关键节点,众多企业纷纷扬帆起航,开启海外拓展之旅。然而,在一片向好的行业发展表象下,部分跨境物流企业的经营状况却不容乐观。它们受困于激烈的市场竞争、不断攀升的运营成本,以及复杂的国际物流环境,陷入了微利
    华尔街科技眼 2025-04-09 15:15 99浏览
  •   物质扩散与污染物监测系统:环境守护的关键拼图   一、物质扩散原理剖析   物质扩散,本质上是物质在浓度梯度、温度梯度或者压力梯度等驱动力的作用下,从高浓度区域向低浓度区域迁移的过程。在环境科学范畴,物质扩散作为污染物在大气、水体以及土壤中迁移的关键机制,对污染物的分布态势、浓度动态变化以及环境风险程度有着直接且重大的影响。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这些成功案例为物质
    华盛恒辉l58ll334744 2025-04-09 11:24 66浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦