555定时器芯片内部电路分析

凡亿PCB 2023-09-12 07:30

555定时器芯片由于使用方便灵活,应用非常广泛。常用在波形的产生与变化、测量与控制等许多领域。

家用电器、电子玩具中都很常见,是非常经典的一款芯片。

究竟有多经典,甚至可以出它的手办模型。

由于广受市场欢迎,许多芯片公司都各自推出了555定时器芯片。

尽管产品型号繁多,芯片内部电路的实现不尽相同,但他们最终实现的功能和外部引脚的排列完全相同。

网上有很多555定时器做的应用电路,但是讲解都非常粗陋简略,可读性很差,比如这样的文章:

下面就以其中一款555定时器芯片为例,分析芯片的内部电路,讲解其工作原理。

只要了解了芯片的工作原理,看各种芯片的应用电路时就会得心应手。


目录:

一、芯片引脚定义

二、芯片内部结构

三、等效图组成说明

四、等效图各功能区分析:分压电路 + 电压比较器

五、等效图各功能区分析:RS触发器

六、等效图各功能区分析:电压比较器 + RS触发器

七、等效图各功能区分析:555定时器芯片的PIN5(第5脚)

八、等效图各功能区分析:555定时器芯片的PIN3(第3脚)

九、等效图各功能区分析:555定时器芯片的PIN4(第4脚)、PIN7(第7脚)

十、最后




一、芯片引脚定义


555定时器有8个脚,各脚定义如下。

各脚的详细定义见下表。(英文名称均为缩写)



二、芯片内部结构


打开555定时器的数据手册,可以看到芯片的内部电路。

用不同颜色划分一下电路的功能区块。

包括:

  1. Threshold Comparator(门限比较器,就是个电压比较器)

  2. Trigger Comparator(触发比较器,就是个电压比较器)

  3. Voltage Divider(分压电路)

  4. Flip-Flop(触发器,这里也叫RS触发器、复位/置位触发器、SR锁存器)

  5. Output(输出电路)

  6. Discharge(放电电路)


看起来有点复杂,等效简化为下图后就一目了然啦。



三、等效图组成说明


C1和C2就是两个电压比较器,即上文提到过的Threshold Comparator(门限比较器)和Trigger Comparator(触发比较器)。

Flip-Flop(触发器),这里又叫RS触发器。

输出脚有个反相器。能将输入的低电平反相为高电平输出,同样能将输入的高电平反相为低电平输出。(高电平可以简单理解为电压接近电源电压Vcc,低电平可以简单理解为电压接近0)

Reset(复位)和Discharge(放电):

PIN4为输入引脚,为低电平时整个芯片处于复位状态,芯片不可用。

PIN7是放电引脚,用来给外部电路放电。

Voltage Divider(分压电路)。



四、等效图各功能区分析:分压电路 + 电压比较器


3个5kΩ电阻将Vcc电压三等分。

2/3Vcc输入到电压比较器C1的反向输入端。

1/3Vcc输入到电压比较器C2的正向输入端。

Vcc电压的范围,需要查看芯片的数据手册,这里的数据手册标示为5V到15V。

假设Vcc为9V时,2/3Vcc = 6V,1/3Vcc = 3V。

对于电压比较器来说,当"正向输入端的V1" > "反向输入端的V2”时,输出Vout = High高电平。

当"正向输入端的V1" < "反向输入端的V2”时,输出Vout = Low低电平。

所以当555定时器第6脚为7V时,电压比较器C1的"同相输入端(7V)" > "反向输入端(6V)",电压比较器C1输出HIGH高电平。

当555定时器第6脚为0V时,电压比较器C1的"同相输入端(0V)" < "反向输入端(6V)",电压比较器C1输出LOW低电平。



五、等效图各功能区分析:RS触发器


电压比较器C1、C2将电压比较的结果输出给RS触发器。

RS触发器有两个输入脚,分别为R和S:

R代表Reset(复位);

S代表Set(置位)

RS触发器两个输出脚,分别为Q和非Q(“非Q”的符号是在Q的上面有一个横杠):Q和非Q的电平,在一般情况下互为相反,即Q为高电平,那么非Q为低电平。

其内部是由两个“或非门”组成。

在下面我们将看到在RS触发器定义里的三个特性。

特性1:S、R为高电平有效。即S为高电平,就会把Q置位为1;R为高电平,就会把Q复位为0。

特性2:S、R同时为低电平时,Q和非Q将保持原来的状态不变。

特性3:S和R不能同时为高电平。这是RS触发器的定义规定的,但实际在555定时器的应用里,是可能出现其内部RS触发器的S和R同时为高电平的这种情况,稍后将展开讨论。


来看RS触发器的输入输出关系:

1、当S、R分别输入为HIGH、LOW时,Q被置位为HIGH,与之对应非Q为LOW。(特性1)


2、此时将S、R分别改为输入LOW、LOW时,Q、非Q将保持原来的状态,即仍为HIGH、LOW。(特性2)


3、当S、R分别输入为LOW、HIGH时,Q被复位为LOW,与之对应非Q为HIGH。(特性1)


4、此时将S、R分别改为输入LOW、LOW时,Q、非Q将保持原来的状态,即仍为LOW、HIGH。(特性2)


5、当S、R分别输入为HIGH、HIGH时,Q和非Q均为LOW。(见特性3,此为RS触发器定义里禁止出现的状态,可以看出此时Q和非Q的状态也不是相反的了,变成了相同的LOW)

为什么在RS触发器的定义里,要禁止出现这种状态呢?因为S、R同时为HIGH时,后续如果S、R是都变成LOW,那么由于S、R在都变成LOW的过程中,时间先后上总有细微的误差,S、R可能先变成LOW、HIGH,也可能先变成HIGH、LOW,这导致Q和非Q的状态不能确定。

当S比R先变成LOW时,最终Q和非Q分别为LOW、HIGH:


当R比S先变成LOW时,最终Q和非Q分别为HIGH、LOW:

所以在分析555定时器内部电路时,要谨记RS触发器的S、R为HIGH、HIGH时,避免下一步就变为LOW、LOW。


另外,由于555定时器里面只使用了非Q,没有使用Q,所以我们只看非Q就好了。



六、等效图各功能区分析:电压比较器 + RS触发器


1、PIN6、PIN2分别输入0V、0V时:

①、电压比较器C1比较两个输入端的电压,最后输出Low到RS触发器的R端。

②、电压比较器C2比较两个输入端的电压,最后输出High到RS触发器的S端。

③、R、S分别为Low、High,RS触发器最终在非Q端输出Low。


2、PIN6、PIN2分别输入0V、9V时:

①、电压比较器C1比较两个输入端的电压,最后输出Low到RS触发器的R端。

②、电压比较器C2比较两个输入端的电压,最后输出Low到RS触发器的S端。

③、R、S分别为Low、Low,RS触发器最终在非Q端输出Low,即保持原来的状态。


3、PIN6、PIN2分别输入9V、9V时:

①、电压比较器C1比较两个输入端的电压,最后输出High到RS触发器的R端。

②、电压比较器C2比较两个输入端的电压,最后输出Low到RS触发器的S端。

③、R、S分别为High、Low,RS触发器最终在非Q端输出High。


4、PIN6、PIN2分别输入9V、0V时:

①、电压比较器C1比较两个输入端的电压,最后输出High到RS触发器的R端。

②、电压比较器C2比较两个输入端的电压,最后输出High到RS触发器的S端。

③、R、S分别为High、High,RS触发器最终在非Q端输出Low。(如前所述,这里要注意避免R、S在下一步是变为LOW、LOW)



七、等效图各功能区分析:555定时器芯片的PIN5(第5脚)


555定时器的PIN5是控制阈值电压脚。

PIN5接到电压比较器C1的反向输入端,可以让人直接控制电压比较器C1的阈值电压。



八、等效图各功能区分析:555定时器芯片的PIN3(第3脚)


555定时器的PIN3是芯片的输出脚。

PIN3和RS触发器的非Q之间有1个反相器。

当非Q输出HIGH时,PIN3输出LOW,两者为反相关系。



九、等效图各功能区分析:555定时器芯片的PIN4(第4脚)、PIN7(第7脚)


555定时器的PIN4是芯片的复位脚。当PIN4被接到低电平时,整个555定时器芯片被复位,PIN3将输出LOW。(图中三极管Q2的发射限流电阻未画出)

555定时器的PIN7是芯片的放电引脚。对外放电时,内部三极管Q1导通。(图中三极管Q1的基极限流电阻未画出)



十、最后


555定时器芯片的输入输出特性功能表总结如下,分为5种状态,后续在分析555定时器的应用电路时可借助该表进行分析:

注:在“状态5”时,下一步不能变成“状态3”,否则将导致输出结果不能确定。


至此,555定时器芯片内部电路的分析到此完毕,是不是感觉有点意犹未尽?

那是因为本文仅仅对芯片内部的电路做了分析,没有对芯片的应用电路做实例分析。所谓的空有内功心法,但是没有练过一招一式。

后续看到各种不同厂家生产的555定时器芯片所做成的应用电路时,可以参考本文讲解的芯片工作原理,多看多分析,积累越来越多的招式

最后,关于电路的学习,希望大家,Enjoy!

本文有点长,建议收藏,随时查阅。

声明:


本文转载自电路啊 公众号,如涉及作品内容、版权和其它问题,请于联系工作人员微(prrox66),我们将在第一时间和您对接删除处理!

投稿/招聘/广告/课程合作/资源置换 请加微信:13237418207

号外号外!凡亿教育周年庆要搞大事送福利


PCB电源完整性完整指南:从电路板到封装


扫码添加客服微信,备注“入群”拉您进凡亿教育官方专属技术微信群,与众位电子技术大神一起交流技术问题及心得~



分享💬 点赞👍 在看❤️ “三连”支持!


点击“阅读原文”查看更多干货文章

凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 67浏览
  • 速卖通,作为阿里巴巴集团旗下的跨境电商平台,于2010年横空出世,彼时正值全球电商市场蓬勃发展,互联网的普及让跨境购物的需求日益增长,速卖通顺势而为,迅速吸引了全球目光。它以“让天下没有难做的生意”为使命,致力于打破国界限制,搭建起中国商家与全球消费者之间的桥梁。在其发展的黄金时期,速卖通取得的成绩令人瞩目。在欧洲市场,速卖通一度成为第一大电商平台。根据第三方机构《欧洲跨境商务》的评选,速卖通凭借出色的服务和消费者口碑,在“欧洲十大跨境电商平台”中脱颖而出,力压来自美国的亚马逊和eBay等电商巨
    用户1742991715177 2025-04-26 20:23 205浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 94浏览
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 235浏览
  • 探针台作为高精度测试设备,在光电行业的关键器件研发、性能测试及量产质量控制中发挥核心作用,主要涵盖以下应用场景与技术特性:一、光电元件性能测试1.‌光电器件基础参数测量‌l 用于LED、光电探测器、激光器等元件的电流-电压(I-V)特性、光功率、响应速度等参数测试,支撑光通信、显示技术的器件选型与性能优化。l 支持高频信号测试(如40GHz以上射频参数),满足高速光调制器、光子集成电路(PIC)的带宽与信号完整性验证需求。2.‌光响应特性分析‌l 通过电光转换效率测
    锦正茂科技 2025-04-27 13:19 120浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 102浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 129浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 97浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 101浏览
  •  集成电路封装测试是确保芯片性能与可靠性的核心环节,主要包括‌晶圆级测试(CP测试)‌和‌封装后测试(FT测试)‌两大阶段,流程如下:一、晶圆级测试(CP测试)1.‌测试目的‌:在晶圆切割前筛选出功能缺陷或性能不达标的晶粒(Die),避免后续封装环节的资源浪费,显著降低制造成本。2.‌核心设备与操作‌l ‌探针台(Prober)‌:通过高精度移动平台将探针与晶粒的Pad jing准接触,实现电气连接。l ‌ATE测试机‌:提供测试电源、信号输入及功能向量,接收晶粒反
    锦正茂科技 2025-04-27 13:37 189浏览
  • 探针台作为半导体制造与测试的核心设备,通过精密定位与多环境适配能力,支撑芯片研发、生产及验证全流程。以下是其关键应用领域与技术特性:一、核心功能支撑1.‌电性能测试与分析‌l 在晶圆切割前,探针台直接接触芯片电极,测量阈值电压、漏电流、跨导等200余项参数,用于评估良品率及优化工艺设计。l 支持单晶体管I-V曲线测量,定位栅极氧化层厚度偏差(精度达0.2nm),为器件性能分析提供数据基础。2.‌纳米级定位与测量‌l 定位精度达±0.1μm,满足5nm及以下制程芯片的
    锦正茂科技 2025-04-27 13:09 151浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 244浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 125浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 76浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦