硅光芯片的机遇与挑战

FPGA技术江湖 2023-09-11 12:37

点击上方蓝字关注我们


计算机性能至关重要,但由于简单的小型化和高积集度有先天性的限制,因此平行处理器架构和3D电路结构的发展正被半导体产业所关注。这样的技术发展带动了芯片间所需讯息传输频宽的增加,预计2025-2030年对频宽的需要将超过10Tbit/s。然而,传统电线的传输速度有10Tbit/s左右的限制,而且功耗也是一个严重的问题。

所以为了突破频宽限制和功耗的障碍,高科技产业对光电融合的期望越来越高,这使得光讯号和电讯号密不可分。光电融合预计将扩展到连接服务器中CPU的布线、连接CPU和电路的I/O,甚至CPU内部的布线。图一显示了电气布线和光布线的功耗与传输距离的关系。同时可以看发现,当传输频宽增加时,即使距离很短,光布线也变得更有优势性。

图一: 显示了电气布线和光布线的功耗与传输距离的关系性。(source:电子情报通信学会-日本;作者整理)

云服务和5G需求带动硅光子成长

根据日本Research Nester的一份关于硅光子的市场报告中显示,2022年硅光子市场规模约为20亿美元。预计到2035年底,硅光子全球市场规模将达到550亿美元,2023-2035年间的复合年增长率高达29.80%。
市场增长可归因于对基于云端的服务和5G技术的需求激增,以及光电子技术的进步。整体因素包括了,快速成长的工业4.0、越来越多的产业采用IoT设备、电信产业需求不断成长、笔记型电脑和智慧手机等消费电子产品的使用增加,以及新一代的设备已转向由人工智慧(AI)驱动发展(图二)。

图二: 对于硅光子市场成长的贡献因素(source:Research Nester;作者整理)
硅光子市场依照零组件领域可区分为,光波导、调变器、光感测器、雷射。其中雷射的部分,预计到2035年将成为最大的市场占有硅光子零件,约为35%。而在应用产品方面则可区分为收发模组、电缆、光开关、感测器、光衰减器、其他(图三)。
图三: 根据硅光子市场产品分类的比例统计。(source:Research Nester;作者整理)

共同封装光学的现状和挑战

就如上述,由于5G、物联网、人工智慧和高效能运算应用的兴起,数据中心流量以近30%的复合年成长率增长。此外,近四分之三的数据中心流量被保留或暂存在数据中心内,再加上传统的可插拔光学元件的成长速度,比数据中心流量的增长速度慢得许多,因此应用需求与传统可插拔光学元件的能力之间的差距不断扩大,这种的趋势将会导致
延缓5G、物联网、人工智慧和高效能运算应用等的扩大性,所以需要更新的封装技术来解决此一问题。
一种颠覆性的封装技术,共同封装光学元件(Co-packaged optics;CPO)就被提出来,透过先进的封装技术,以及电子学和光子学的最佳化整合,来大幅缩短电气链路长度,从而提高互连频宽密度和能源效率。因此CPO被广泛认为是未来数据中心互连的一个最有效的解决方案。
包括了Intel、Broadcom和IBM等,全球国际半导体技术领先业者,都已经投入大量资金对CPO技术展开深入研究。这是一个跨学科的研究领域,涉及了光子元件、集成电路设计、封装、光子元件建模、电子-光子整合模拟、应用和技术(图四)。
图四: 透过CPO技术将光子元件与ASIC整合到同一基板上。(source:Broadcom;作者整理)

光子封装的缩放

在过去数十年里,摩尔定律不断的导引着CMOS制造技术发展,因此大多数人也认为硅光子学应该遵循这种规模化趋势,并致力于透过低成本制造光子集成电路(PIC)来快速达到规模经济。
然而,与电子元件不同,光子元件的缩放本质上是困难的。光子元件的尺寸主要由材料的折射率对比度决定,因此硅光子元件的整体尺寸仍保持在微米级别,很难缩减到纳米级别。因此,当我们谈论硅光子的缩放时,实际上是探讨先进的制造技术如何实现光子封装的缩放。
封装概念与制程达到深度融合
要实现极高密度的光输入/输出,就必须采用高效的光纤耦合结构。耦合结构有光栅耦合器和边缘耦合器两种。光栅耦合器通常利用简单的两步骤蚀刻制程生产,来实现垂直光耦合。而光栅耦合器具有相对较宽的对准容差、较小的光学频宽和较高的偏振灵敏度。
因此,与边缘耦合器不同,光栅耦合器通常是用于晶圆级测试,而不是商业性产品。边缘耦合器可实现较小的耦合损耗和较大的光学频宽,这对于实际应用来说是理想的。然而,边缘耦合器在制造过程中需要底切(Undercut)和深蚀刻技术,而这就会影响着元件稳定性和可靠性的问题。
On-chip光源的整合是硅光子学的主要挑战之一。只依赖硅基材料很难形成高性能雷射器。因此便开发出在硅光子芯片上进行III-V化合物材料的异质材料整合,或异质结构整合的技术,但这对硅光子制造技术来说,还是需要进行重大调整。
未来,从2.5D CPO到3D CPO,CPO制程将不仅仅是一种封装技术,而是一种制造与封装的结合,需要设计与制程的共同最佳化,来让封装概念与制程达到深度融合。

设法降低光纤封装难度

在目前大多数CPO解决方案中,光输入和光输出的路径中都使用了边缘耦合器。边缘耦合器经过精心设计,可同时满足高对准容差和低插入损耗的要求。通过V型槽(V-groove)结构进行被动式的对准,典型的光纤到芯片损耗可控制在-1.5 dB。使用热移相器(Thermal Phase Shifters)等结构更有助于进一步提高对准容差。由于硅光子收发器是高速开关组装CPO系统的重要构件,其中多个收发器模组紧邻开关ASIC。如图所示,中心交换机ASIC周围有成百上千根光纤,其中既有保持偏极(Polarization-Maintaining;PM)光纤,也有非保持偏极光纤。所以必须透过采用高阶调变技术和On-chip光源的整合来减少光纤数量,降低光纤封装难度。
图五: 用于光输入的保持偏极光纤和用于光输出的非保持偏极光纤的混合封装。(source:《Co-packaged optics (CPO): status, challenges, and solutions》)

利用异质结构整合和异质整合

On-chip光源的整合方法包括异质结构整合(例如雷射二极体的Flip-Chip Bonding)和异质整合(例如,Wafer-Level Material Bonding)。
在Flip-Chip Bonding方法中,将一般雷射二极体透过共晶焊接的方式贴合在硅光子芯片上。雷射芯片和硅光子芯片之间采用Mechanical stops和fiducial marks进行高精度非主动式对准。因为利用了成熟的雷射二极体产品,来简化了开发过程,进而实现了快速商业化。而在Wafer-Level Material Bonding方法中,雷射器是在硅光子芯片制造过程中所形成的,所以III-V材料和硅波导之间的模式转变器需要对生产线前端的制程进行修改。雷射电极的制造会导致生产线后端的制程改变。
总之,硅光子生产线需要大规模重建,来实现异质整合。然而这两种方法都需要考虑散热和应变所引起的性能下降问题,以便将来能顺利应用于CPO(图六)。
图六: (a) On-chip光源的异质结构整合;(b)异质材料整合。(source:《Co-packaged optics (CPO): status, challenges, and solutions》)
在3D-CPO的结构下,硅光子芯片可作为中介层,实现更短的电路连接和更低的功耗。最近,imec展示了一种嵌入硅通孔(TSV)结构的混合组装光学模组,其射频的频宽超过了110 GHz,为下一代需要在100G baud速率运作的硅光子模组克服了障碍(图七)。在硅光子芯片上制造TSV需要额外的制程技术,包括高宽比的Bosch深反应性蚀刻,和晶圆薄化制程,这些都可能会带来产量和可靠性方面的问题。
图七: imec发表一款TSV结构的混合组装光学模组:(a)使用具有TSV结构的硅光子插层的混合组装光模组。(b)硅光子插层上的TSV制程。(source:imec;作者整理)
随着高整合化趋势的发展,标准硅光子制造技术必须与封装的发展相适应。为了满足CPO的要求,需要开发先进的硅光子制造技术和元件结构。这对于CPO应用设计人员来说,与晶圆代工厂密切合作以实现设计-制程的共同最佳化将更为有效。

硅材料对于硅光子学发展的限制

传统上,硅光子学(SiPh)被理解为基于主导常规电子电路的材料的积集光子学:硅和氧化硅(二氧化硅)。在科学文献中,这种类型的集成光子学通常称为绝缘体上硅(SOI),该术语也用于特种半导体技术。
从严格意义上讲,SOI材料可能是3D光子系列中最受限制的技术,该系列还包括基于氮化硅(SiN)和磷化铟(InP)的技术。由于其间接带隙,硅无法产生增益或雷射,也就是说该材料不能用于构建主动组件,例如光源和放大器。SiN也是如此,但这种材料比SOI具有更低的光损耗和更广泛的光谱覆盖范围。
InP是唯一一种无需外部帮助即可执行所有功能的半导体,但也具有SOI在损耗和光谱覆盖范围方面的缺点。Si和SiN平台通常都依赖于与InP的某种形式的整合(如果仅作为光源的话)。做到这一点的最佳方法是针对特定应用。
当然,SOI的特性足以满足许多有趣的应用。光可以有效地导入和导出芯片,并且可以使用重要的被动组件,例如千兆赫调变器和光感测器。除此之外,还能够利用数十年的硅制程经验(300mm晶圆、高产量、与CMOS共同整合、各种先进的3D制程技术),因此硅光子学在未来还是有很大的发展空间。
然而,SiPh越来越多地被解释为可以在CMOS晶圆厂中制造的任何类型的光子元件。在这种情况下,SiPh和SiN可以变成一个实体,因为后者也可与CMOS相容。但有一个限制,制造光损耗极低的高阶SiN波导需要很高的热预算,所以这可能与无法与其他功能的形成相容性整合。
而因为CMOS制造环境受到严格控制,某些材料是被禁止的,包括InP和其他III-V族半导体。另一方面,CMOS的定律并不是一成不变的。在过去的几十年里,晶圆厂导入了几种新材料来维持摩尔定律的运行。所以如果有强有力的商业策略,这一切皆是有可能的。然而,目前还没有任何光子学应用能够产生足以保证主流晶圆厂进行此类调整的数量。
未来SiPh需要引进更多的新材料,来不断改进性能和成本。例如,随着数据中心收发器的讯号速率超过200 Gb/s下,实现足够的调变器频宽和可接受的光损耗,就变得具有挑战性。这些障碍只能透过在混合物中引入新材料来解决。
此外,急需了解透过在前端处理环境之外,有哪些无法使用的材料,或包含这些材料的组件,可以在满足CMOS规则的同时引入新材料。但目前,还不清楚什么是最合适的整合,以及何时可以大规模展开。除了数据和电信之外,应用研究仍处于起步阶段。不过随着SiPh所彰显出的吸引力、商业策略的巩固和市场拉力的增加,或许材料极限将被证明并不像以前想像的那么困难。
文章来源:半导体行业观察

- -THE END- -


往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

FPGA图像处理专题课新增Vivado部分内容,线上线下均可报名

FPGA时序分析及约束专题课新增Vivado部分内容,线上线下均可报名

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2023.07.09更新)

FPGA就业班,2023.09.12开班,系统性学习FPGA,高薪就业,线上线下同步!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+学校/公司+专业/岗位进群


FPGA技术江湖QQ交流群

备注姓名+学校/公司+专业/岗位进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 66浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 73浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 42浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦