一文看懂RTC

嵌入式电子 2023-09-10 18:41

什么是RTC

RTC (Real Time Clock):实时时钟

RTC是个独立的定时器。RTC模块拥有一个连续计数的计数器,在相应的软件配置下,可以提供时钟日历的功能。修改计数器的值可以重新设置当前时间和日期 RTC还包含用于管理低功耗模式的自动唤醒单元。

在断电情况下 RTC仍可以独立运行 只要芯片的备用电源一直供电,RTC上的时间会一直走。

RTC实质是一个掉电后还继续运行的定时器,从定时器的角度来看,相对于通用定时器TIM外设,它的功能十分简单,只有计时功能(也可以触发中断)。但其高级指出也就在于掉电之后还可以正常运行。

两个 32 位寄存器包含二进码十进数格式 (BCD) 的秒、分钟、小时( 12 或 24 小时制)、星期几、日期、月份和年份。此外,还可提供二进制格式的亚秒值。系统可以自动将月份的天数补偿为 28、29(闰年)、30 和 31 天。

上电复位后,所有RTC寄存器都会受到保护,以防止可能的非正常写访问。

无论器件状态如何(运行模式、低功耗模式或处于复位状态),只要电源电压保持在工作范围内,RTC使不会停止工作。

RCT特征:

● 可编程的预分频系数:分频系数高为220。

● 32位的可编程计数器,可用于较长时间段的测量。

● 2个分离的时钟:用于APB1接口的PCLK1和RTC时钟(RTC时钟的频率必须小于PCLK1时钟 频率的四分之一以上)。

● 可以选择以下三种RTC的时钟源:

     ● HSE时钟除以128;

     ● LSE振荡器时钟;

     ● LSI振荡器时钟

● 2个独立的复位类型:

     ● APB1接口由系统复位;

     ● RTC核心(预分频器、闹钟、计数器和分频器)只能由后备域复位

● 3个专门的可屏蔽中断:

     ● 1.闹钟中断,用来产生一个软件可编程的闹钟中断。

     ● 2.秒中断,用来产生一个可编程的周期性中断信号(长可达1秒)。

     ● 3.溢出中断,指示内部可编程计数器溢出并回转为0的状态。

RTC时钟源:

三种不同的时钟源可被用来驱动系统时钟(SYSCLK):

● HSI振荡器时钟

● HSE振荡器时钟

● PLL时钟

这些设备有以下2种二级时钟源:

● 40kHz低速内部RC,可以用于驱动独立看门狗和通过程序选择驱动RTC。RTC用于从停机/待机模式下自动唤醒系统。

● 32.768kHz低速外部晶体也可用来通过程序选择驱动RTC(RTCCLK)。

RTC原理框图

RTC时钟的框图还是比较简单的,这里我们把他分成 两个部分:

APB1 接口:用来和 APB1 总线相连。此单元还包含一组 16 位寄存器,可通过 APB1 总线对其进行读写操作。APB1 接口由 APB1 总 线时钟驱动,用来与 APB1 总线连接。

通过APB1接口可以访问RTC的相关寄存器(预分频值,计数器值,闹钟值)。

RTC 核心接口:由一组可编程计数器组成,分成 两个主要模块 。

第一个模块是 RTC 的 预分频模块,它可编程产生 1 秒的 RTC 时间基准 TR_CLK。RTC 的预分频模块包含了一个 20 位的可编程分频器(RTC 预分频器)。如果在 RTC_CR 寄存器中设置了相应的允许位,则在每个 TR_CLK 周期中 RTC 产生一个中断(秒中断)。

第二个模块是一个 32 位的可编程计数器 (RTC_CNT),可被初始化为当前的系统时间,一个 32 位的时钟计数器,按秒钟计算,可以记 录 4294967296 秒,约合 136 年左右,作为一般应用,这已经是足够了的。

RTC具体流程:

RTCCLK经过RTC_DIV预分频,RTC_PRL设置预分频系数,然后得到TR_CLK时钟信号,我们一般设置其周期为1s,RTC_CNT计数器计数,假如1970设置为时间起点为0s,通过当前时间的秒数计算得到当前的时间。RTC_ALR是设置闹钟时间,RTC_CNT计数到RTC_ALR就会产生计数中断,

RTC_Second为秒中断,用于刷新时间,

RTC_Overflow是溢出中断。

RTC Alarm 控制开关机

RTC时钟选择

使用HSE分频时钟或者LSI的时候,在主电源VDD掉电的情况下,这两个时钟来源都会受到影响,因此没法保证RTC正常工作。所以RTC一般都时钟低速外部时钟LSE,频率为实时时钟模块中常用的32.768KHz,因为32768 = 2^15,分频容易实现,所以被广泛应用到RTC模块。(在主电源VDD有效的情况下(待机),RTC还可以配置闹钟事件使STM32退出待机模式)。

RTC复位过程

除了RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器外,所有的系统寄存器都由系统复位或电源复位进行异步复位。

RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器仅能通过备份域复位信号复位。

系统复位后,禁止访问后备寄存器和RCT,防止对后卫区域(BKP)的意外写操作

读RTC寄存器

RTC内核完全独立于APB1接口,软件通过APB1接口对RTC相关寄存器访问。但是相关寄存器只在RTC APB1时钟进行重新同步的RTC时钟的上升沿被更新。所以软件必须先等待寄存器同步标志位(RTC_CRL的RSF位)被硬件置1才读。

配置RTC寄存器

必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、

RTC_CNT、RTC_ALR寄存器。

另外,对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询

RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是’1’

时,才可以写入RTC寄存器。

RTC时钟源

RTC是一个独立的时钟源

RTC寄存器

  • RTC控制寄存器 (RTC_CRH, RTC_CRL)

  • RTC预分频装载寄存器 (RTC_PRLH, RTC_PRLL)

  • RTC预分频余数寄存器 (RTC_DIVH, RTC_DIVL)

  • RTC计数器寄存器 (RTC_CNTH, RTC_CNTL)

  • RTC闹钟寄存器 (RTC_ALRH ,RTC_ALRL)


RTC控制寄存器高位——RTC_CRH 寄存器

作用:配置3个专门的可屏蔽中断(溢出中断、闹钟中断、秒中断)使能。

注意:系统复位后所有的中断被屏蔽,因此可通过写RTC寄存器来

确保在初始化后没有挂起的中断请求。当外设正在完成前一次写操作时(标志位RTOFF=0),不

能对RTC_CRH寄存器进行写操作。

RTC控制寄存器低位——RTC_CRL 寄存器

一般用到该寄存器的 3,4,5位

第 3 位为寄存器同步标志位,我们在修改控制寄存器 RTC_CRH/CRL 之前,必须先判断该位,是否已经同步了,如果没有则等待同步

第 4 位为配置标位,在软件修改 RTC_CNT/RTC_ALR/RTC_PRL 的值的时候,必须先软件置位该位,以允许进入配置模式

第 5 位为 RTC 操作位,该位由硬件操作,软件只读。通过该位可以判断上次对 RTC 寄存器的操作是否完成,如果没有,我们必须等待上一次操作结束才能开始下一次,也就是判断RTOFF位是否置位。

三个位总结如下:

① 修改CRH/CRL寄存器,必须先判断RSF位,确定已经同步。

② 修改CNT,ALR,PRL的时候,必须先配置CNF位进入配置模式,修改完之后,设置CNF位为0退出配置模式

③ **同时在对RTC相关寄存器写操作之前,必须判断上一

RTC 预分频装载寄存器——(RTC_PRLH/RTC_PRLL) 寄存器

作用:配置 RTC 时钟的分频数,

比如我们使用外部 32.768K 的晶振作为时钟的输入频率,那么我们要设置这两个寄存器的值为 7FFFh(32767),就可获得周期为1秒钟的信号。

RTC预分频器余数寄存器(RTC_DIVH、RTC_DIVL)

作用:和他的名字一样,获得余数,也就是获取更精确的计时,比如:0.1s ,0.01 s等

寄存器是只读寄存器,其值在RTC_PRL或RTC_CNT寄存器中的值发生改变后,由硬件重新装载。

RTC 计数器寄存器——RTC_CNTX 寄存器

作用:存放计数器内的计数值。也就是用来记录时钟时间

该寄存器由 2 个 16 位的寄存器组成 RTC_CNTH 和 RTC_CNTL,总共 32 位,当进行读操作时,直接返回计数器内的计数值(系统时间)

RTC 计数器寄存器——RTC 闹钟寄存器(RTC_ALRH、RTC_ALRL)

作用:RTC时钟中断控制寄存器

该寄存器也是由 2 个 16 位的寄存器组成 RTC_ALRH 和 RTC_ALRL,也就是32位,当可编程计数器的值与RTC_ALR中的32位值相等时,即触发一个闹钟事件,并且产生RTC闹钟中断。

BKP备份寄存器

备份寄存器是42个16位的寄存器。可用来存储84个字节数据。

它们处在备份区域,当VDD电源切断,仍然由VBAT维持供电。

当系统在待机模式下被唤醒,或者系统复位或者电源复位,它们也不会复位。

执行以下操作将使能对后备寄存器和RTC访问:

  • 设置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能电源和后备时钟。

  • 设置寄存器PWR_CR的DBP位,使能对RTC和后备寄存器的访问

一般用 BKP 来存储 RTC 的校验值或者记录一些重要的数据,

配置RTC寄存器:

1.查询RTOFF位,知道RTOFF的值为1.

2.置CNF值为1,进入配置模式。

3.对一个或者多个RTC寄存器进行写操作。

4.清除CNF标志位,退出配置模式。

5.查询RTOFF,直到RTOFF位变1,已确认写操作已经完成。

仅当CNF标志位被清除时,写操作才能进行,这个操作至少需要3个RTCCLK周期。

RTC相关库函数

RTC时钟源和时钟操作函数:

 void RCC_RTCCLKConfig(uint32_t  CLKSource);//时钟源选择

 void RCC_RTCCLKCmd(FunctionalState NewState)//时钟使能

RTC配置函数(预分频,计数值):

void RTC_SetPrescaler(uint32_t PrescalerValue);//预分频配置:PRLH/PRLL

void RTC_SetCounter(uint32_t CounterValue);//设置计数器值:CNTH/CNTL

void RTC_SetAlarm(uint32_t AlarmValue);//闹钟设置:ALRH/ALRL

RTC中断设置函数:

void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);//CRH

RTC配置函数:

void RTC_EnterConfigMode(void);//允许RTC配置 :CRL位 CNF

void RTC_ExitConfigMode(void);//退出配置模式:CRL位 CNF

RTC同步函数:

void RTC_WaitForLastTask(void);//等待上次操作完成:CRL位RTOFF

 void RTC_WaitForSynchro(void);//等待时钟同步:CRL位RSF

RTC相关状态位获取清除函数:

FlagStatus RTC_GetFlagStatus(uint16_t RTC_FLAG);

void RTC_ClearFlag(uint16_t RTC_FLAG);

ITStatus RTC_GetITStatus(uint16_t RTC_IT);

void RTC_ClearITPendingBit(uint16_t RTC_IT);

其他相关函数(BKP等)

PWR_BackupAccessCmd();//BKP后备区域访问使能

RCC_APB1PeriphClockCmd();//使能PWR和BKP时钟

RCC_LSEConfig();//开启LSE,RTC选择LSE作为时钟源

PWR_BackupAccessCmd();//BKP后备区域访问使能

uint16_t BKP_ReadBackupRegister(uint16_t BKP_DR);//读BKP寄存器

void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data);//写BKP

配置RTC步骤

①使能PWR和BKP时钟:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);

1

② 使能后备寄存器访问:

PWR_BackupAccessCmd(ENABLE); //使能 RTC 和后备寄存器访问

1

③复位备份区域,开启外部低速振荡器。

BKP_DeInit();//复位备份区域

1

④ 配置RTC时钟源,使能RTC时钟:

RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); //选择 LSE 作为 RTC 时钟(RCC_RTCCLKSource_LSI 和 RCC_RTCCLKSource_HSE_Div128)

RCC_RTCCLKCmd(ENABLE); //使能 RTC 时钟

⑤ 设置RTC预分频系数:RTC_SetPrescaler();

RTC_EnterConfigMode();/// 允许配置

RTC_SetPrescaler(32767); //设置RTC预分频的值

RTC_WaitForLastTask();//等待最近一次对RTC寄存器的写操作完成

⑥ 设置时间:RTC_SetCounter();

RTC_EnterConfigMode();/// 允许配置

void RTC_SetCounter(uint32_t CounterValue);

RTC_WaitForLastTask();//等待最近一次对RTC寄存器的写操作完成

⑦开启相关中断(可选):

void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);//RTC_ITConfig(RTC_IT_SEC, ENABLE); //使能 RTC 秒中断

⑧编写中断服务函数:

RTC_IRQHandler();

⑨部分操作要等待写操作完成和同步。

   RTC_WaitForLastTask();//等待最近一次对RTC寄存器的写操作完成

   RTC_WaitForSynchro();//等待RTC寄存器同步 

具体的代码,库函数写的太多了,我会用CubeMx配置下,用HAL库写一个例程,几十行就可以解决RTC。

https://blog.csdn.net/as480133937/article/details/105026033


定期以通俗易懂的方式分享嵌入式知识,关注公众号,加星标,每天进步一点点。


声明:

本号原创、转载的文章、图片等版权归原作者所有,如有侵权,请联系删除。

关注、点赞、在看、转发,支持优质内容! 

评论
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦