Linux调试工具|Addr2line

原创 Linux二进制 2023-06-09 22:28

addr2line translates addresses into file names and line numbers. Given an address in an executable or an offset in a section of a relocatable object, it uses the debugging information to figure out which file name and line number are associated with it.

描述:addr2line将地址转换为文件名和行号。给定可执行文件中的地址或可重定位对象部分中的偏移量,它会使用调试信息来确定与之相关的文件名和行数。

一、前言

通过addr2line的描述可知,在使用addr2line将地址转换为函数、文件名或行号时,其有两种使用方法:即对于可执行文件,addr2line后直接跟十六进制的地址值;对于可重定位对象文件,addr2line后直接跟十六进制的地址偏移量。从而实现正确输出需要的信息,否则会导致地址无法解析,输出??:0

提示:可通过file命令区分可执行文件与可重定位对象

#输出executable,可知文件是可执行文件
[root@localhost ~]# file test
test: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=6bae72d43422a7a048ecf8bce55723aff816820b            , with debug_info, not stripped
#输出relocatable,可知文件是可重定位对象
[root@localhost ~]# file helloworld.ko
helloworld.ko: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), BuildID[sha1]=2f5b2cbb443e05489dcf0272dbb0b72875172411, with debug_info, not stripped

二、用法

addr2line用于得到程序指令地址所对应的函数,以及函数所在的源文件名和行号。如果没有在命令行中给出地址,就从标准输入中读取它们。

基本用法:addr2line [选项] [地址]

选项描述
-a--addresses 显示地址
-b--target= 设置二进位文件格式
-e--exe= 设置输入文件名称(默认为 a.out)
-i--inlines 解开内联函数
-j--section= 读取相对于段的偏移而非地址
-p--pretty-print 让输出对人类更可读
-s--basenames 去除目录名
-f--functions 显示函数名
-C--demangle[=style] 解码函数名
-h--help 显示本帮助

三、程序崩溃场景

1、用户态普通程序

使用方法:addr2line -e 进程名 IP指令地址 -f

用户态程序有时可能因为各种原因导致崩溃,发生段错误,比如空指针等。如果没有靠谱的工具,我们就只能靠猜哪里的代码可能存在问题,这里通过Linux自带的addr2line工具调试程序,能够快速直接帮我们准确定位到文件、异常函数名以及行号。

segfault.c源文件:

#include 
int main()
{
       int *p = NULL;
       *p = 0;

       return 0;
}

使用gcc进行编译,如下:

[root@localhost 68]# gcc segfault.c -o segfault -g
[root@localhost 68]# ls
segfault  segfault.c
[root@localhost 68]# ./segfault
Segmentation fault (core dumped)

dmesg查看报错信息,如下:

[root@localhost ~]# dmesg
[134563.793925] segfault[53791]: segfault at 0 ip 0000000000400546 sp 00007fff7956af70 error 6 in segfault[400000+1000]
[134563.793946] Code: 01 5d c3 90 c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 f3 0f 1e fa eb 8a 55 48 89 e5 48 c7 45 f8 00 00 00 00 48 8b 45 f8  00 00 00 00 00 b8 00 00 00 00 5d c3 66 2e 0f 1f 84 00 00 00 00
[root@localhost 68]# addr2line -e segfault 0000000000400546 -f
main
/tmp/68/segfault.c:5

该例子说明addr2line能够直观程序发生段错误的函数以及文件和行号。

:如果编译程序时没有加上-g参数(即程序不含调试信息),就只能显示出函数名,显示不出具体所在文件的位置,如下:

[root@localhost 68]# addr2line -e segfault 0x0000000000400546 -f
main
??:?

提示:如何区分程序是否还有调试信息,可通过file命令,如果输出结果中显示with debug_info则表示程序含有调试信息,否则表示不含有调试信息。

#不含有调试信息
[root@localhost 68]# file segfault
segfault: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=135f8128f721d829b9318da6105cc47223b14de9, not stripped
#含有调试信息
[root@localhost 68]# file segfault
segfault: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=c94635b3ef107e7ecc19f4c1a16e16f031d9ca51, with debug_info, not stripped

2、动态库程序

在动态库中发生段错误,也可以使用addr2line进行定位。

使用方法:addr2line -e 动态库名 IP指令地址-基地址 -f

test.c源文件:

#include "foo.h"

int main(void)
{
    foo();
    return 0;
}

foo.h:

#ifndef __FOO_LIB_H__
#define __FOO_LIB_H__

int foo(void);

#endif

foo.c:

#include "foo.h"

int foo()
{
    int *p = 0;
    *p = 0;
    return 0;
}

先编译动态库, 再编译主程序, 让它链接动态库, 最后运行之:

[root@localhost 69]# gcc -O3 -g -o libfoo.so -shared -fPIC foo.c
[root@localhost 69]# gcc -O3 -g -o test test.c -L. -lfoo 
[root@localhost 69]# export LD_LIBRARY_PATH=. 
[root@localhost 69]# ./test
Segmentation fault (core dumped)

查看dmesg日志,如下:

[root@localhost ~]# dmesg
[70567.416655] test[27722]: segfault at 0 ip 00007ffa1f588580 sp 00007fffa964e698 error 6 in libfoo.so[7ffa1f588000+1000]
[70567.427374] Code: ff e8 64 ff ff ff c6 05 bd 0a 20 00 01 5d c3 0f 1f 00 c3 0f 1f 80 00 00 00 00 f3 0f 1e fa e9 77 ff ff ff 0f 1f 80 00 00 00 00  04 25 00 00 00 00 00 00 00 00 0f 0b 00 00 00 f3 0f 1e fa 48 83

根据日志可知,段错误发生的位置是在test进程调用的libfoo.so库里,我们先使用ldd找到动态库的位置,如下:

[root@localhost 69]# ldd test
        linux-vdso.so.1 (0x00007ffd15b24000)
        libfoo.so => ./libfoo.so (0x00007f8c01879000)
        libc.so.6 => /lib64/libc.so.6 (0x00007f8c014b4000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f8c01a7b000)

00007ffa1f588580为程序崩溃点ip指令地址,使用dmesg消息中ip指令地址减去动态库基址值(00007ffa1f588580 -7ffa1f588000=580), 差值0x580为错误点在动态库的地址,调用addr2line, 注意-e参数后文件名改为动态库名:

[root@localhost 69]# addr2line -e libfoo.so 580 -f -p
foo at /tmp/69/foo.c:6

动态库基址值(模块载入地址)即dmesg消息libfoo.so[7ffa1f588000+1000]语句中的7ffa1f588000值。

3、内核模块程序

使用方法:addr2line -e xxx.ko 地址偏移量 -f

当内核模块程序异常时,可能会导致机器直接死机重启,这种情况下定位bug可能就比较麻烦,dmesg日志在机器重新启动后,新的日志会覆盖掉原来的报错日志,从而对定位内核异常问题造成麻烦。常见

提示:Linux内核错误

1、panic 当内核遇到严重错误的时候,内核panic,立马崩溃。死机。

2、Oops Oops是内核遇到错误时发出的提示“声音”,Oops有时候会触发panic,有时候不会,而是直接杀死当前进程,系统可以继续运行。

比如说内核态下的段错误,当内核设置了panic_on_oops=1的时候,Oops会触发panic。【panic_on_oops的值在内核编译的时候配置,可以在/proc/sys/kernel/panic_on_oops查看值,同时可以使用sysctl修改】

panic_on_oops=0的时候,如果错误发生在中断上下文,Oops也会触发panic。如果错误只是发生在进程上下文,这个时候只需要kill当前进程。【中断上下文包括以下情况:硬中断、软中断、NMI】。Oops的时候内核还可以运行,只是可能不稳定,这个时候,内核会调用printk打印输出内核栈的信息和寄存器的信息。

本人所用主机即属于一旦发生Oops,就会触发panic,因此总是无法查看Oops时的dmesg日志,经查阅资料,发现是内核参数panic_on_oops的原因导致的,因为该参数被设置为1,所以Oops会触发panic,从而导致机器总是死机重启,无法查看Oops时的dmesg日志。下面提供两种方法修改Oops内核参数,使其不会在Oops的时候触发panic导致死机重启。

方法一:修改 /proc下内核参数文件内容,临时生效,重启后失效。

echo 0 > /proc/sys/kernel/panic_on_oops

方法二:修改/etc/sysctl.conf 文件的内核参数来永久更改。

[root@localhost ~]# vi /etc/sysctl.conf
[root@localhost ~]# cat /etc/sysctl.conf
# sysctl settings are defined through files in
# /usr/lib/sysctl.d/, /run/sysctl.d/, and /etc/sysctl.d/.
#
# Vendors settings live in /usr/lib/sysctl.d/.
# To override a whole file, create a new file with the same in
# /etc/sysctl.d/ and put new settings there. To override
# only specific settings, add a file with a lexically later
# name in /etc/sysctl.d/ and put new settings there.
#
# For more information, see sysctl.conf(5) and sysctl.d(5).
kernel.panic_on_oops=0
[root@localhost ~]# cat /proc/sys/kernel/panic_on_oops

[root@localhost ~]# sysctl -p
kernel.panic_on_oops = 0
[root@localhost ~]#
[root@localhost ~]# cat /proc/sys/kernel/panic_on_oops
0

设置好Oops内核参数以后,让我们来构造生成Oops的程序,源代码如下:

oops.c源文件

#include 
#include 
#include 

static noinline void do_oops(void)
{
    *(int *)0 = 0;
}

static int my_oops_init(void)
{
    pr_info("my_oops_init\n");
    do_oops();

    return 0;
}

static void my_oops_exit(void)
{
    pr_info("my_oops exit\n");
}

module_init(my_oops_init);
module_exit(my_oops_exit);
MODULE_DESCRIPTION ("Kernel OOPS Testing");
MODULE_LICENSE("GPL");

编译内核模块的Makefile文件

ifneq ($(KERNELRELEASE),)
EXTRA_CFLAGS = -Wall -g
obj-m := oops.o
else
PWD  := $(shell pwd)
KVER := $(shell uname -r)
KDIR := /lib/modules/$(KVER)/build
all:
        $(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
        rm -rf .*.cmd *.o *.order *.symvers *.mod.c *.ko .tmp_versions
endif

编译以及安装oops.ko模块,出现killed,由于错误未发生在中断上下文,未导致Kernel panic死机重启。

[root@localhost oops]# make
make -C /lib/modules/4.18.0-394.el8.x86_64/build M=/tmp/oops modules
make[1]: Entering directory '/usr/src/kernels/4.18.0-394.el8.x86_64'
  CC [M]  /tmp/oops/oops.o
  Building modules, stage 2.
  MODPOST 1 modules
  CC      /tmp/oops/oops.mod.o
  LD [M]  /tmp/oops/oops.ko
make[1]: Leaving directory '/usr/src/kernels/4.18.0-394.el8.x86_64'
[root@localhost oops]#
[root@localhost oops]# ls
dump.log  Makefile  modules.order  Module.symvers  oops.c  oops.ko  oops.mod.c  oops.mod.o  oops.o
[root@localhost oops]# insmod ./oops.ko
Killed 
[root@localhost oops]# lsmod | grep oops
oops                   16384  1

加载模块将生成以下Kernel Oops消息,dmesg查看信息如下:

[root@localhost ~]# dmesg
[ 1039.918606] my_oops_init
[ 1039.918616] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[ 1039.926442] PGD 0 P4D 0
[ 1039.928979] Oops: 0002 [#1] SMP NOPTI
[ 1039.932637] CPU: 34 PID: 3843 Comm: insmod Kdump: loaded Tainted: G           OE    --------- -  - 4.18.0-394.el8.x86_64 #1
[ 1039.943756] Hardware name: New H3C Technologies Co., Ltd. H3C UniServer R4950 G5/RS45M2C9SB, BIOS 5.37 09/30/2021
[ 1039.954000] RIP: 0010:do_oops+0x5/0x11 [oops]
[ 1039.958364] Code: Unable to access opcode bytes at RIP 0xffffffffc02e6fdb.
[ 1039.965231] RSP: 0018:ffffb9d40a8c7cb0 EFLAGS: 00010246
[ 1039.970449] RAX: 000000000000000c RBX: 0000000000000000 RCX: 0000000000000000
[ 1039.977573] RDX: 0000000000000000 RSI: ffff98942ee96758 RDI: ffff98942ee96758
[ 1039.984697] RBP: ffffffffc02e7011 R08: 0000000000000000 R09: c0000000ffff7fff
[ 1039.991822] R10: 0000000000000001 R11: ffffb9d40a8c7ad8 R12: ffffffffc02e9000
[ 1039.998944] R13: ffffffffc02e9018 R14: ffffffffc02e91d0 R15: 0000000000000000
[ 1040.006069] FS:  00007f1b8d93b740(0000) GS:ffff98942ee80000(0000) knlGS:0000000000000000
[ 1040.014145] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1040.019884] CR2: ffffffffc02e6fdb CR3: 0000000145c02000 CR4: 0000000000350ee0
[ 1040.027008] Call Trace:
[ 1040.029454]  my_oops_init+0x16/0x19 [oops]
[ 1040.033550]  do_one_initcall+0x46/0x1d0
[ 1040.037390]  ? do_init_module+0x22/0x220
[ 1040.041318]  ? kmem_cache_alloc_trace+0x142/0x280
[ 1040.046023]  do_init_module+0x5a/0x220
[ 1040.049777]  load_module+0x14ba/0x17f0
[ 1040.053530]  ? __do_sys_finit_module+0xb1/0x110
[ 1040.058059]  __do_sys_finit_module+0xb1/0x110
[ 1040.062411]  do_syscall_64+0x5b/0x1a0
[ 1040.066077]  entry_SYSCALL_64_after_hwframe+0x65/0xca
[ 1040.071130] RIP: 0033:0x7f1b8c8509bd
[ 1040.074701] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 9b 54 38 00 f7 d8 64 89 01 48
[ 1040.093446] RSP: 002b:00007ffc4df0a968 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
[ 1040.101004] RAX: ffffffffffffffda RBX: 00005653fb1997d0 RCX: 00007f1b8c8509bd
[ 1040.108126] RDX: 0000000000000000 RSI: 00005653f980c8b6 RDI: 0000000000000003
[ 1040.115251] RBP: 00005653f980c8b6 R08: 0000000000000000 R09: 00007f1b8cbd9760
[ 1040.122375] R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000000
[ 1040.129498] R13: 00005653fb1997b0 R14: 0000000000000000 R15: 0000000000000000
[ 1040.136623] Modules linked in: oops(OE+) binfmt_misc xt_CHECKSUM ipt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache bridge stp llc intel_rapl_msr intel_rapl_common amd64_edac_mod edac_mce_amd amd_energy kvm_amd kvm irqbypass ipmi_ssif pcspkr crct10dif_pclmul crc32_pclmul ghash_clmulni_intel rapl joydev ccp sp5100_tco i2c_piix4 k10temp ptdma acpi_ipmi ipmi_si sunrpc vfat fat xfs libcrc32c sd_mod t10_pi sg crc32c_intel ast drm_vram_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops drm_ttm_helper ttm ahci drm libahci nfp(OE) igb libata dca i2c_algo_bit dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler
[ 1040.208357] CR2: 0000000000000000
[ 1040.211668] ---[ end trace b69c1e8998070273 ]---
[ 1040.230185] RIP: 0010:do_oops+0x5/0x11 [oops]
[ 1040.234540] Code: Unable to access opcode bytes at RIP 0xffffffffc02e6fdb.
[ 1040.241409] RSP: 0018:ffffb9d40a8c7cb0 EFLAGS: 00010246
[ 1040.246626] RAX: 000000000000000c RBX: 0000000000000000 RCX: 0000000000000000
[ 1040.253750] RDX: 0000000000000000 RSI: ffff98942ee96758 RDI: ffff98942ee96758
[ 1040.260876] RBP: ffffffffc02e7011 R08: 0000000000000000 R09: c0000000ffff7fff
[ 1040.267998] R10: 0000000000000001 R11: ffffb9d40a8c7ad8 R12: ffffffffc02e9000
[ 1040.275124] R13: ffffffffc02e9018 R14: ffffffffc02e91d0 R15: 0000000000000000
[ 1040.282247] FS:  00007f1b8d93b740(0000) GS:ffff98942ee80000(0000) knlGS:0000000000000000
[ 1040.290323] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1040.296061] CR2: ffffffffc02e6fdb CR3: 0000000145c02000 CR4: 0000000000350ee0

消息解析:

[ 1039.928979] Oops: 0002 [#1] SMP NOPTI
[ 1039.932637] CPU: 34 PID: 3843 Comm: insmod Kdump: loaded Tainted: G           OE    --------- -  - 4.18.0-394.el8.x86_64 #1 

Oops: 0002 -- 错误码

Oops: [#1] -- Oops发生的次数

CPU: 34 -- 表示Oops是发生在CPU34上

关键信息如下,这里提示在操作函数do_oops的时候出现异常,地址偏移量0x5:

[ 1039.954000] RIP: 0010:do_oops+0x5/0x11 [oops]

为什么这条信息关键,因为其含有指令指针RIP;指令指针IP/EIP/RIP的基本功能是指向要执行的下一条地址。在8080 8位微处理器上的寄存器名称是PCprogram counter,程序计数器),从8086起,被称为IPinstruction pointer,指令指针)。主要区别在与PC指向正在执行的指令,而IP指向下一条指令。在64位模式下,指令指针是RIP寄存器。这个寄存器保存着下一条要执行的指令的64位地址偏移量。64位模式支持一种新的寻址模式,被称为RIP相对寻址。使用这个模式,有效地址的计算方式变为RIP(指向下一条指令)加上位移量。

由此可以看出内核执行到do_oops+0x5/0x11这个地址的时候出现异常,我们只需要找到这个地址对应的代码即可。

打印格式do_oops+0x5/0x11 [oops] 即:symbol+offset/size [module] symbol: 符号 offset:地址偏移量 size:函数的长度 module: 所属内核模块

do_oops指示了是在do_oops函数中出现的异常, 0x5表示出错的地址偏移量, 0x11表示do_oops函数的大小。使用file查看内核模块文件类型:

[root@localhost oops]# file oops.ko
oops.ko: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), BuildID[sha1]=4b5b58c4aaf63d65d338be17399bfd3c480504c3, with debug_info, not stripped

上述结果显示该内核模块文件为可重定位对象文件,因此使用addr2line直接跟十六进制的地址偏移量定位文件名、行号和行数,如下:

[root@localhost oops]# addr2line -e oops.ko 0x5 -f -p
do_oops at /tmp/oops/oops.c:7

可以看到异常代码在oops.c文件第7行,根据源代码,可知该行代码访问非法内存地址。

四、总结

Addr2line 工具(它是标准的 GNU Binutils 中的一部分)是一个可以将指令的地址和可执行映像转换成文件名、函数名和源代码行数的工具。这在应用程序和内核程序执行过程中出现崩溃时,可用于快速定位出出错的位置,进而找出代码的bug。一般适用于 debug 版本或带有 symbol 信息的库。


Linux二进制 Linux编程、内核模块、网络原创文章分享,欢迎关注"Linux二进制"微信公众号
评论
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 88浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 102浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 82浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 96浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 68浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 92浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 74浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 83浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦