点击“意法半导体PDSA",关注我们!
引言
负压现象
【图1 半桥电路的负压现象】
栅极驱动器稳健性
STDRIVE601设计的主要特点是其对噪音、扰动和负压现象出色的稳健性。得益于创新的电平转换器架构和ST先进的制造工艺技术,该驱动器具有出色的抗击高负压尖峰能力,并且能够在非常陡峭的共模暂态下正常运行。
在专用的测试电路(图2)中测试并确认了该芯片对负压尖峰的抗扰性,该设计旨在人为地产生比实际应用中发现的尖峰大得多的负压尖峰。
图2中RL负载为200 µH、16 Ω,且为了模拟PCB布局较差时引入的杂散电感的影响,选了几个电感(0.19 µH, 0.45 µH, 0.82µH)可与低侧IGBT串联。
【图2 负压现象分析电路】
图3为杂散电感为0.82 µH时的现象:输出由300V摆动至0V,负压尖峰最小峰值为-127V且保持148ns。经过几次的切换,没有任何损坏或者运转失常。
【图3 杂散电感为0.82 µH时通道1输出存在-127V负压尖峰】
自举二极管
【图4 STDRIVE601自举二极管和传统自举二极管对比】
内置自举电路导通,有一个正向偏置,不存在实际二极管中的偏置电压。图4展示了这两者的区别,其表示了STDRIVE601自举二极管和传统自举二极管的I-V(电流-电压)转移曲线。对于给定电流,这一特征在剩余电压降方面优势突出,且可在电压降较小时也可对自举电容进行充电,而传统二极管对此稍显乏力。
过流智能关断保护
SmartSD电路可在过载或过流时关断栅极驱动器,且故障检测至实际输出关断之间的延时仅360ns。保护干预时间与故障后的禁用时间相互独立,且保护响应速度为市场上其他栅极驱动器的两倍。这允许设计者在不增加内部保护延迟时间的情况下,将故障事件后输出的禁用时间增加到非常大的值。禁用时间取决于外部电容COD的容值和可选的连接到OD引脚的上拉电阻的阻值(见图5)。
用于智能关断的比较器具有一个内部参考电压VREF且其连接到反相输入端,同相输入端连接至引脚CIN。比较器的CIN引脚可连接至外部分流电阻,进而实现简单快速的过流保护功能。比较器输出信号经滤波后输入到SmartSD逻辑单元,其滤波时间为固定时间tFCIN(约300ns)。
VREF阈值典型值为460 mV,比较器输入(CIN)滞环电压约为70 mV。当CIN引脚上脉冲电压高于VREF时,SmartSD逻辑被触发并立即将驱动器输出置低(OFF)。同时,故障引脚(FAULT)强制置低来指示该事件(例如输入到微控制器)且OD开始让外部电容COD放电以设置故障事件的输出禁用时间。一旦输出禁用时间到期,FAULT引脚将释放且驱动器输出重新跟随输入引脚。
总禁用时间由如下两部分组成:
·OD解锁时间(图5中t1),即电容COD放电至VSSDl阈值的时间。SmartSD比较器被触发时放电立即开始。
·OD重启时间(图5中t2),即电容COD重新充电至VSSDh阈值的时间。当OD上电压达到VSSDl,故障状态清除(CIN < VREF -CINhyst),OD内部MOSFET关闭,此时COD重新充电。这个时间是禁用时间的主要组成部分。
当OD未经外部上拉时,外部电容COD放电时间常数取决于COD和内部MOSFET的特性(如下方程(1)所示),重启时间取决于内部电流源IOD和电容COD(如下方程(2)所示)
其中VOD为OD浮动电压。
当OD经外部上拉电阻ROD_ext连接至VCC时,OD放电时间取决于外部网络ROD_ext、COD和内部MOSFET的电阻RON_OD(如下方程(3)所示),重启时间取决于流过ROD_ext的电流(如下方程(4)所示)。
其中
【图5 智能关断时序图】
下图为两种不同的电容连接至OD引脚时智能关断功能运行示例。CIN引脚上的触发脉冲宽度为500ns、峰峰值为1V,且内部电流源(IOD)对外部电容进行充电。
【图6 左图中COD = 2.2 µF,右图中COD = 330 nF】
其它功能和特点
【图7 VCC电源上的UVLO机制】
总结
“阅读原文”,了解更多。