来源:https://blog.csdn.net/weixin_37981492/article/details/112737265
解决问题:malloc在申请内存的时候,内存碎片问题会导致原本内存大小足够,却申请大内存失败;
比如: 原本内存还有10M内存,此时先申请4M内存,再申请16Bytes内存,之后把4M内存释放掉,按理来说,此时应该还有 10M - 16Bytes 内存,但此时,再去申请8M的大内存,则申请失败。因为malloc申请的内存,必须是一块连续的内存,但此时中间已经有16Bytes内存碎片导致内存不连续,所以申请内存失败;
以下是我针对碎片问题,对内存管理机制做出一种优化方案: 在开机初始化内存之后,先申请一块1M左右内存(根据情况修改大小),用作内存碎片管理,然后把这1M内存分为很多个小内存,并把小内存的地址放在链接节点中,之后申请内存时,优先判断内存碎片管理中是否有满足大小的小内存,有的话,直接使用提前申请的小内存就可以了,如果内存管理机制中没有适合的内存,但重新用malloc()函数申请;
接下来,解释我写的碎片管理机制:
void mm_management_init(unsigned int free_memory_start, unsigned int free_memory_end)
传入参数free_memory_start是内存初始化之后,剩余可申请的首地址,该地址,一般会传入到main函数,如果main()函数没有传入该参数的话,可以在内存初始化之后,自己malloc(4)申请一下,把返回的地址作为mm_management_init()函数的第一个参数;
传入参数free_memory_end是可以申请的最大地址,每个IC各有不同;
mm_management_init()对16bytes,64bytes,256bytes,512bytes,1024bytes,4096bytes这些小内存做优化,提前计算小内存占用的总大小,然后直接申请这块大内存占住,再把这块大内存分配给各个小内存,并记录在链表中,比如:mm_fix_16_head
unsigned int mm_management_malloc(unsigned int size)
申请内存的时候,先判断size大小,如果大小可以在内存管理机制中找到,则直接返回提前申请地址,如果大小不满足,或者小内存已被申请完,则用malloc重新申请
在内存管理机制中拿到的小内存,该链表节点的标记会设为MM_STATUS_BUSY
void mm_management_free(void *mm_ptr)
与mm_management_malloc()相反,先检查所有小内存链表是都有该地址,有的话就把该地址内存清0,并把标记设为MM_STATUS_FREE;如果是用malloc申请的,当时是free()释放掉;
接下来是代码:
#include
#include
#define C_MM_16BYTE_NUM (32)
#define C_MM_64BYTE_NUM (16)
#define C_MM_256BYTE_NUM (12)
#define C_MM_512BYTE_NUM (12)
#define C_MM_1024BYTE_NUM (18)
#define C_MM_4096BYTE_NUM (30)
#define C_MM_16BYTE (16)
#define C_MM_64BYTE (64)
#define C_MM_256BYTE (256)
#define C_MM_512BYTE (512)
#define C_MM_1024BYTE (1024)
#define C_MM_4096BYTE (4096)
#define C_MM_MAX_SIZE C_MM_4096BYTE //碎片管理最大的碎片大小
#define MM_STATUS_FREE (0) //0:表示内存空闲
#define MM_STATUS_BUSY (1) //1:表示内存已被申请
#define MM_STATUS_OK (0)
#define MM_STATUS_FAIL (1)
typedef struct mm_node_struct {
unsigned int *mm_node; //存放内存节点指针
unsigned short iflag; //指针是否空闲
struct P_MM_Node_STRUCT *next; //指向下一个内存节点指针
} MM_Node_STRUCT, *P_MM_Node_STRUCT;
typedef struct mm_sdram_struct {
unsigned int count;
P_MM_Node_STRUCT *next;
} MM_SDRAM_STRUCT, *P_MM_SDRAM_STRUCT;
static MM_SDRAM_STRUCT mm_fix_16_head;
static MM_SDRAM_STRUCT mm_fix_64_head;
static MM_SDRAM_STRUCT mm_fix_256_head;
static MM_SDRAM_STRUCT mm_fix_512_head;
static MM_SDRAM_STRUCT mm_fix_1024_head;
static MM_SDRAM_STRUCT mm_fix_4096_head;
static P_MM_SDRAM_STRUCT pmm_fix_16_head = &mm_fix_16_head;
static P_MM_SDRAM_STRUCT pmm_fix_64_head = &mm_fix_64_head;
static P_MM_SDRAM_STRUCT pmm_fix_256_head = &mm_fix_256_head;
static P_MM_SDRAM_STRUCT pmm_fix_512_head = &mm_fix_512_head;
static P_MM_SDRAM_STRUCT pmm_fix_1024_head = &mm_fix_1024_head;
static P_MM_SDRAM_STRUCT pmm_fix_4096_head = &mm_fix_4096_head;
static P_MM_Node_STRUCT mm_management_getnode(P_MM_SDRAM_STRUCT pmm_fix_head);
static unsigned int mm_management_node_free(P_MM_SDRAM_STRUCT pmm_fix_head, unsigned int *mm_ptr, unsigned int size);
static unsigned int *mm_management_ptr = NULL;
static unsigned int mm_management_size = 0;
/*
** free_memory_start : 开机内存初始化之后,剩余可以申请的地址的首地址
** free_memory_end : 内存可以申请的最大地址
*/
void mm_management_init(unsigned int free_memory_start, unsigned int free_memory_end)
{
unsigned int mm_usesize=0,offset=0,mm_offset;
unsigned char *ptr_tmp;
unsigned int i;
P_MM_Node_STRUCT pmm_fix_head, pmm_fix_tmp;
free_memory_start = (free_memory_start + 3) & (~0x3); // Align to 4-bytes boundary
free_memory_end = (free_memory_end + 3) & (~0x3); // Align to 4-bytes boundary
do{
//[1]判断剩余内存是否满足碎片管理所需大小
mm_usesize = 0;
mm_usesize += C_MM_16BYTE * C_MM_16BYTE_NUM;
mm_usesize += C_MM_64BYTE * C_MM_64BYTE_NUM;
mm_usesize += C_MM_256BYTE * C_MM_256BYTE_NUM;
mm_usesize += C_MM_512BYTE * C_MM_512BYTE_NUM;
mm_usesize += C_MM_1024BYTE * C_MM_1024BYTE_NUM;
mm_usesize += C_MM_4096BYTE * C_MM_4096BYTE_NUM;
if(mm_usesize+free_memory_start > free_memory_end)
{
printf("free memory not enough for mm management,init fail\r\n");
break;
}
mm_management_ptr = (unsigned char *)malloc(mm_usesize); //申请整块碎片管理内存大小 //如果有malloc_align函数,建议改用malloc_align申请64bit对其的内存
if(mm_management_ptr == NULL)
{
printf("mm management malloc fail,init fail\r\n");
break;
}
mm_management_size = mm_usesize;
ptr_tmp = mm_management_ptr;
memset(ptr_tmp, 0x00, mm_usesize);
//[2]内存链表头初始化,用于存放以下步骤的子链表节点
memset((void*)pmm_fix_16_head, 0x00, sizeof(mm_fix_16_head));
memset((void*)pmm_fix_64_head, 0x00, sizeof(mm_fix_64_head));
memset((void*)pmm_fix_256_head, 0x00, sizeof(mm_fix_256_head));
memset((void*)pmm_fix_512_head, 0x00, sizeof(mm_fix_512_head));
memset((void*)pmm_fix_1024_head, 0x00, sizeof(mm_fix_1024_head));
memset((void*)pmm_fix_4096_head, 0x00, sizeof(mm_fix_4096_head));
//[3]申请16Bytes碎片内存存放在链表
mm_offset = 0;
mm_fix_16_head.count = C_MM_16BYTE_NUM;
pmm_fix_head = pmm_fix_16_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_16BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
//[4]申请64Bytes碎片内存存放在链表
mm_offset += C_MM_16BYTE * C_MM_16BYTE_NUM;
mm_fix_64_head.count = C_MM_64BYTE_NUM;
pmm_fix_head = pmm_fix_64_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_64BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
//[5]申请256Bytes碎片内存存放在链表
mm_offset += C_MM_64BYTE * C_MM_64BYTE_NUM;
mm_fix_256_head.count = C_MM_256BYTE_NUM;
pmm_fix_head = pmm_fix_256_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_256BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
//[6]申请512Bytes碎片内存存放在链表
mm_offset += C_MM_256BYTE * C_MM_256BYTE_NUM;
mm_fix_512_head.count = C_MM_512BYTE_NUM;
pmm_fix_head = pmm_fix_512_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_512BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
//[7]申请1024Bytes碎片内存存放在链表
mm_offset += C_MM_512BYTE * C_MM_512BYTE_NUM;
mm_fix_1024_head.count = C_MM_1024BYTE_NUM;
pmm_fix_head = pmm_fix_1024_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_1024BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
//[8]申请4096Bytes碎片内存存放在链表
mm_offset += C_MM_1024BYTE * C_MM_1024BYTE_NUM;
mm_fix_4096_head.count = C_MM_4096BYTE_NUM;
pmm_fix_head = pmm_fix_4096_head;
for(i=0; i {
pmm_fix_tmp = (P_MM_Node_STRUCT)malloc(sizeof(MM_Node_STRUCT));
pmm_fix_tmp->iflag = MM_STATUS_FREE;
pmm_fix_tmp->next = NULL;
offset = (C_MM_4096BYTE * i) + mm_offset; //计算小内存碎片在大buf里的偏移地址
pmm_fix_tmp->mm_node = ptr_tmp + offset;
pmm_fix_head->next = pmm_fix_tmp;
pmm_fix_head = pmm_fix_tmp;
}
}while(0);
printf("mm management init end!!!\r\n");
}
unsigned int mm_management_malloc(unsigned int size)
{
int status = MM_STATUS_FAIL; //MM_STATUS_FAIL表示还没申请到碎片内存
P_MM_Node_STRUCT pmm_fix_node;
unsigned int *mm_ptr = NULL;
//获取空闲碎片节点
do{
//[1]判断申请内存大小是否满足要求
if(size < 0)
{
status = MM_STATUS_FAIL;
printf("mm management malloc size is error\r\n");
return NULL;
}
//[2]判断大小是否小于16Byets
if(size < C_MM_16BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_16_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
//[3]判断大小是否小于64Byets
if(size < C_MM_64BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_64_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
//[4]判断大小是否小于256Byets
if(size < C_MM_256BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_256_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
//[5]判断大小是否小于512Byets
if(size < C_MM_512BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_512_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
//[6]判断大小是否小于1024Byets
if(size < C_MM_1024BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_1024_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
//[7]判断大小是否小于4096Byets
if(size < C_MM_4096BYTE && status == MM_STATUS_FAIL)
{
pmm_fix_node = mm_management_getnode(pmm_fix_4096_head);
if(pmm_fix_node != NULL)
{
status = MM_STATUS_OK;
break;
}
}
}while(0);
if(status == MM_STATUS_OK)
{
mm_ptr = pmm_fix_node->mm_node;
pmm_fix_node->iflag = MM_STATUS_BUSY;
}
else
{
mm_ptr = (unsigned int *)malloc(size);
}
return (unsigned int *)mm_ptr;
}
void mm_management_free(void *mm_ptr)
{
unsigned int i;
int status = MM_STATUS_FAIL;
P_MM_Node_STRUCT pmm_fix_node;
do{
//[1]如果地址是16Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_16_head, mm_ptr, C_MM_16BYTE);
if(status == MM_STATUS_OK)
break;
//[2]如果地址是64Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_64_head, mm_ptr, C_MM_64BYTE);
if(status == MM_STATUS_OK)
break;
//[1]如果地址是256Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_256_head, mm_ptr, C_MM_256BYTE);
if(status == MM_STATUS_OK)
break;
//[1]如果地址是512Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_512_head, mm_ptr, C_MM_512BYTE);
if(status == MM_STATUS_OK)
break;
//[1]如果地址是1024Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_1024_head, mm_ptr, C_MM_1024BYTE);
if(status == MM_STATUS_OK)
break;
//[1]如果地址是4096Bytes碎片地址,则释放内存
status = mm_management_node_free(pmm_fix_4096_head, mm_ptr, C_MM_4096BYTE);
if(status == MM_STATUS_OK)
break;
}while(0);
if(status == MM_STATUS_OK)
{
//do nothing,在mm_management_node_free函数中已经将pmm_fix_node->iflag设为MM_STATUS_FREE
}
else
{
free(mm_ptr);
}
}
//获取MM_SDRAM_STRUCT里的空闲节点
static P_MM_Node_STRUCT mm_management_getnode(P_MM_SDRAM_STRUCT pmm_fix_head)
{
P_MM_SDRAM_STRUCT pmm_fix_head_tmp = pmm_fix_head;
P_MM_Node_STRUCT pmm_fix_node = pmm_fix_head_tmp->next;
unsigned int count = pmm_fix_head_tmp->count;
unsigned int i;
for(i=0; i {
if(pmm_fix_node->iflag == MM_STATUS_FREE)
break;
pmm_fix_node = pmm_fix_node->next;
}
if(i < count)
return pmm_fix_node;
else
return NULL;
}
//比较MM_SDRAM_STRUCT的所有节点,如果地址一致,则释放地址
static unsigned int mm_management_node_free(P_MM_SDRAM_STRUCT pmm_fix_head, unsigned int *mm_ptr, unsigned int size)
{
P_MM_SDRAM_STRUCT pmm_fix_head_tmp = pmm_fix_head;
P_MM_Node_STRUCT pmm_fix_node = pmm_fix_head_tmp->next;
unsigned int count = pmm_fix_head_tmp->count;
unsigned int i;
for(i=0; i {
if(pmm_fix_node->mm_node == mm_ptr)
{
if(pmm_fix_node->iflag == MM_STATUS_FREE)
{
printf("mm management have been free\r\n");
}
else
{
pmm_fix_node->iflag = MM_STATUS_FREE;
memset((void *)mm_ptr, 0x00, size); //释放内存后,把碎片内存清0
}
return MM_STATUS_OK;
}
pmm_fix_node = pmm_fix_node->next;
}
return MM_STATUS_FAIL;
}
这份代码我写得还是比较简单,注释些也写得清楚,明白它的原理,应该很容易就看懂;
说一下这个机制的优缺点:优点:1.小内存申请的时候,先去提前申请好的内存中获取,这样可以很好地解决内存碎片问题;
缺点以及优化:1.碎片管理机制可申请的碎片数量是有限的,当数量被申请完之后,还是得重新用malloc申请;但是这可以通过我定义的 C_MM_16BYTE_NUM 和 C_MM_16BYTE 这些宏定义修改碎片数量,根据项目需要修改数量,也是能很好的优化此问题;
2.比如我要申请4个Bytes,但此时,16,64,256,512,1024这几个链表已经用完了,那此时它会用4096这个链表去给4Bytes使用,当然,这同样可以修改C_MM_16BYTE_NUM 和 C_MM_16BYTE 这些宏定义优化这个问题。
本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。
《嵌入式Linux驱动大全》