Nat.Commun.:光纤传感器应用于锂离子电池原位监测以实现热失控早期预警

果壳硬科技 2023-09-04 15:00

欢迎星标 果壳硬科技

研究团队 | 作者

酥鱼 | 编辑


导读


锂离子电池热失控早期预警是全球性科学难题。为攻克这一难题,暨南大学郭团教授团队联合中国科学技术大学火灾科学国家重点实验室王青松研究员团队,提出了一种可植入电池内部的多模态集成光纤原位监测技术,在国际上率先实现了对商业化锂电池热失控全过程的精准分析与提早预警。


该联合团队设计并成功研制出可在1000℃的高温高压环境下正常工作的多模态集成光纤传感器,实现了对电池热失控全过程内部温度和压力的同步精准测量,攻克了热失控极端环境下温度与压力信号相互串扰的难题,提出解耦电池产热和气压变化速率的新方法,首次发现了触发电池热失控链式反应的特征拐点与共性规律,实现了对电池内部微观“不可逆反应”的精准判别,为快速切断电池热失控链式反应、保障电池在安全区间运行提供了重要手段。


相关研究成果以“Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies”为题发表在期刊Nature Communications上,中国科学技术大学梅文昕博士和暨南大学刘誌研究生为论文共同第一作者,暨南大学郭团教授和中国科学技术大学王青松研究员为论文共同通讯作者,该工作由中国科学技术大学、暨南大学、加拿大科学院、香港理工大学、加拿大卡尔顿大学联合完成。



研究背景


随着“双碳”目标的深入推进,锂离子电池在从化石燃料到可再生能源的持续转型中发挥着越来越为关键的作用。然而,近年来锂电池热失控引发的火灾安全事故极大地阻碍了其在电动汽车和储能领域的规模化应用,热失控问题为电池整个产业链敲响了安全的警钟。因此深入理解锂电池热失控演变机制,对于早期热失控预警、防止火灾爆炸事故发生具有重要指导作用。


然而,现有的锂电池热失控监测手段完全依赖于响应滞后的外部电、热、声、气等信号,难以实时精确捕捉热失控过程电池内部温度和产热的快速变化,从而阻碍了对热失控过程的深入理解及预警信号的准确判定。因此,迫切需要发展一种适用于锂电池热失控提早预警的电池原位安全检测新技术。


创新研究


多模态光纤传感器


图1所示为集成了光纤布拉格光栅(FBG)和开腔法布里珀罗干涉仪(FPI)的多功能光纤传感器,可实现电池内部温度和压力的同步监测。FBG反射光谱的中心波长与纤芯折射率和光栅周期成正比,而温度变化会通过弹光效应和热光效应改变纤芯折射率和光栅周期,进一步造成反射光谱中心波长的偏移,因此通过中心波长偏移可解调得到温度变化。而外界压力变化会通过改变FPI开放腔内的气体折射率造成干涉光谱波长的变化,因此通过干涉光谱波长偏移可解调实现压力测量。


图1 FBG和FPI多功能光纤传感器测量温度-压力的原理


图2a-d为FBG-FPI集成光纤传感器的温度、压力校准测试,从图2a和2b中可以发现FBG中心波长与温度变化表现出高度线性相关性,线性灵敏度为10.3 pm °C-1;在图2c和图2d中,FPI波长与压力线性相关,灵敏度为4188.4 pm MPa-1;更为重要的是,FBG和FPI传感器分别对压力和温度变化不敏感,这意味着FBG和FPI传感器均对单一参量(温度或压力)敏感,从而实现温度和压力的精确测量。随后,在18650电池负极中心位置开孔并植入多功能光纤传感器,进而评估了电池在植入传感器后的倍率性能和循环性能,发现电池性能并没有受到植入传感器的影响,见图2e,f。


图2 多功能光纤传感器的校准以及植入后电池性能评估


电池热失控内部温度-压力原位监测


如图3显示了100%SOC、50%SOC和0%SOC三种不同荷电状态的电池热失控过程中内部温度和压力的演化规律。通过与电池大小相同的圆柱形加热棒触发电池热失控,得到了电池在热滥用条件下的热失控行为。通过图3a,c,e可以看出内部压力在整个加热过程出现两个峰值,分别对应于安全阀开启和热失控发生过程,对于0%SOC电池而言,未发生热失控,则相应地没有出现第二个压力峰值。


从图3a,c,e中的局部放大图可发现有趣的现象:电压掉落表示电池内短路的发生,此时由于内部焦耳热的瞬间释放,内部温度出现约20 ℃的阶跃跳变,而表面温度则由于滞后性表现出较小或可忽略不计的温度阶跃,这表明通过电池内部温度的阶跃变化可以预测内短路的发生。


此外,100%SOC电池在热失控过程中内部最高温度达509.8 ℃,而由于热失控瞬间内部热量难以扩散,外部温度仅有328.8 ℃,温差高达180 ℃,这些结果都表明通过外部温度监测热失控过程存在严重的滞后性和局限性。


图3 18650型锂离子电池热失控过程中内部温度和压力的原位监测


电池热失控早期预警


传统的热失控预警依赖于安全阀开启后的产气行为,以及内短路引起的电压掉落,然而当观测到这些信号时,电池内部已经发生了不可逆化学变化。因此本文旨在电池发生不可逆化学变化之前进行早期预警,可保证电池后续正常工作。


为了进一步分析电池安全阀开启之前的热失控预警信号,对图4a内部温度和压力曲线对时间进行微分运算,得到图4b温度和压力随时间的变化率。从图4b中的局部放大图可以发现,内部温度和压力上升速率存在两个阶段:阶段①,温升速率增长而压力变化速率保持稳定;阶段②,温升速率保持稳定而压力变化速率开始增长。


进一步提取温度和压力变化速率得到了图4c-e,由于温升速率和压力变化率的相反趋势,二者组成了一个“菱形区间”,菱形区间的转折点被设定为预警起始点。


图4f给出了温度和压力变化率背后蕴含的反应机制,在阶段①,温度变化占主导地位,常温电池受到高温加热棒的热传导而导致电池温升速率逐渐升高。在阶段②,压力变化占主导地位,经过前期的快速温升,电池温度的升高一方面导致压力的增大,另一方面导致电解液开始蒸发(进一步造成压力增大),从而导致压力变化率增大,此时电池仍处于可逆的物理变化阶段;随着电池内部温度和压力的进一步增加,SEI膜开始分解,此时电池已发生不可逆化学变化。因此设定预警区间始于电解液蒸发(菱形区间转折点)、止于SEI膜分解,此时电池温度为70~80 °C。且通过图4c-e可以看出该预警区间不受SOC的影响,具有普适性,可作为一种通用的电池热失控预警信号。


图4 通过温度和压力微分检测可逆/不可逆反应的转换,建立热失控预警范围


应用与展望


本文创新性地研发出FBG-FPI多功能集成光纤传感器,在不干扰电池运行的情况下对商用锂离子电池热失控过程中的内部温度和压力进行了原位、实时、高精度监测。并且精确量化了电池热失控与光信号之间稳定且可重复的关联性。图5总结了电池热失控过程中内部温度-压力演变规律与内部复杂热失控反应的相关性,经历了电解液蒸发、SEI膜分解、隔膜融化、内短路、安全阀开启、电极/电解液链式系列反应。通过确定温度和压力微分曲线的“菱形”区域,我们提出了基于识别电池内部可逆与不可逆反应转换的热失控早期预警方案,可保障电池的安全使用。


在未来,鉴于光纤传感器尺寸小、具有抗电磁干扰性和远程操作能力,适合大规模生产的标准制造工艺,且可以实现一根光纤在电池的多个位置同时监测包括温度、压力、折射率、气体和离子浓度在内的多种关键参数。光纤传感技术与电池的结合将会在新能源汽车、储能电站安全检测等领域发挥重要作用。


图5 锂离子电池热失控机理及早期预警区间的建立


研究团队

通讯作者 郭团:暨南大学教授,博士生导师,国际IEEE仪器与测量学会光子技术委员会主席,国家优秀青年科学基金获得者,广东省科技创新领军人才。从事光纤传感、生物光子学、能源光子学等领域研究。主持国家自然科学基金(重点、优青等5项)及省部级科研项目20余项。在Nat. Commun.(4篇)、Light Sci. Appl.(3篇)、Adv. Opt. PhotonicsEnerg Environ Sci 等期刊发表SCI论文140余篇,论文总他引6100余次,撰写特邀综述论文9篇,参编Springer著作3部,获授权中国、美国、PCT发明专利20余项。担任期刊IEEE Journal of Lightwave TechnologySCIENCE CHINA Information Sciences编委,荣获IEEE仪器与测量学会颁发的2018年度科技奖和2022年度最佳应用奖。


课题组主页

https://ipt.jnu.edu.cn/ofsgroup/main.htm


通讯作者 王青松:中国科学技术大学研究员,博导,英国皇家化学会会士、英国工程技术学会会士。入选爱思唯尔中国高被引学者、欧盟玛丽居里学者、教育部新世纪人才计划、中科院青促会及优秀会员、安徽省“特支计划”创新领军人才。主要从事锂离子电池安全方面的研究,主持国家重点研发计划项目等30余项。近年来在Nature CommunationsProgress in Energy and Combustion ScienceAdvanced Energy MaterialsEnergy Storage MaterialsNano EnergyApplied EnergyJournal of Hazardous Materials等期刊发表SCI论文200余篇。授权发明专利30余件,主/参编标准10余项。获储能年度人物奖、公共安全科学技术学会科学技术进步奖一等奖、侯德榜化工科学技术创新奖、中国消防协会科学技术创新奖一等奖等奖励。

论文信息

发布期刊 nature communications

发布时间 2023年8月29日

文章标题 Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies

(https://doi.org/10.1038/s41467-023-40995-3)

如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论 (0)
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 236浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 112浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 170浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 159浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 127浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 111浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 104浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 225浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 240浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 236浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 162浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 178浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 221浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 174浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 205浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦