仪表放大器的REF引脚的作用.补篇

原创 云深之无迹 2023-09-01 16:55

鄙人又来了,我这几日又沉迷于仪表放大器,仪器一些不是很明朗的用法,现在终于开窍了!

照例还是说下:仪表放大器 (INA) 是一种非常特殊的差分输入放大器;其主要重点是提供差分增益和高共模抑制,INA 提供高输入阻抗和低输出阻抗。INA 的一般定义是配备一到三个内部运算放大器 (op amp) 的电路或设备,用于改善信号质量并增强共模抑制。

共模就是相同的信号

共模噪声又称对地噪声,指的是两根线分别对地的噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。

共模电压有直流的,也有交流的。直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。

一般的放大器特别是仪表放大器,有较好的直流共模抑制,但对交流共模抑制,频率一高往往就不行了----急剧下降,即频率响应不行。

INA 可以很好地将差分信号转换为单端信号。单端信号只需要一根导线参考另一根导线,这意味着多个单端信号都参考同一条导线。这减少了设计中的电线数量。
单端信号很有用,因为许多模数转换器 (ADC) 应用需要单端信号才能运行。
    因此, 对于采用传感器输入的系统,INA 可以很好地用作 ADC 驱动器。ADC 不能接受高共模电压;INA 通过降低共模电压来解决此问题,以便 ADC 能够运行。

INA 的最后一级是差分放大器。这是放大器中抑制共模电压的部分。该阶段将两个输入信号相减。在独立的差分放大器中,R2 和 R4 相等,R1 和 R3 也相等;这些电阻器将设置增益。但在仪表放大器中,增益由输入级设置,因此对于 1 V/V 的增益,R1 至 R4 相等。我不讲理论,就是一些公式,在数学上面说明为什么可以把差模信号放大。

我先上个图:

仪表放大器的REF引脚的作用,我以前不求甚解的写过这个文章,虽然粗糙,其实也说明白了。REF的引脚就是如名字一样,给输出的单端电压一个参考,这个就可以控制它的两个极值,最大和最小,不过这个不是无限的,要看数据手册的。

上面这个图挺重要,意思是5V的电压下,在两个参考值下输入和输出的关系,有时候运放不工作就是因为输入的信号摆幅太小了。

在数据手册里面都可以找到这个图

其实大家做的运放都一样,INA系列的数据手册都差不多,我随便找一个写,原理都一样的,现在说的是三运放结构。

仪表放大器的后面部分是一个差分的放大器

多数应用不需要外部偏移调整;然而,如有必要,可以通过向 REF 端子施加电压来进行调整。图显示了用于微调输出失调电压的可选电路。施加到 REF 端子的电压在输出处求和。运算放大器缓冲器在 REF 端子处提供低阻抗,以保持良好的共模抑制。

INA826 的输出电压是根据参考引脚上的电压而制定的。通常在双电源操作中,参考引脚连接到低阻抗系统接地。
在单电源操作中,将输出信号偏移到精确的中间电源电平可能很有用(例如, 5V 电源环境中的 2.5V)。
例如,要实现此电平转换,请将电压源连接到 REF 引脚以对输出进行电平转换,以便 INA826 可以驱动单电源 ADC。
为了获得最佳性能,请保持 REF 引脚的源阻抗小于 5 Ω。如功能框图部分所示,参考电阻器位于 50kΩ 电阻器的一端。REF 引脚处的额外阻抗会增加该 50kΩ 电阻。电阻比不平衡会导致共模抑制比 (CMRR) 降低。
一般的信号均有源阻抗,此阻抗可以不同程度破坏电路的对称性,因此,用差分放大器时要小心它引起的误差。
显示了驱动低阻抗参考引脚的两种不同方法。OPA330是一款低功耗斩波稳定放大器,因此在整个温度范围内具有出色的稳定性。REF3225是采用小型 SOT23-6 封装的精密基准。这个REF3225的芯片挺牛逼的,10块钱一颗。
里面的INA8xx符合每一个仪表运算器的设计,不是针对一个特定的型号!!!!
继续说这个REF的事情:

一般为了平衡,R4电阻是上下一样的

也就是R2和R4

差分运算放大器A3充当减法器的输出电压,仅是其两个输入之间的电压差(V2 - V1),并且被A3的增益放大,该增益可能为1,单位为零(假设R3 = R4)。然后,对于仪表放大器电路的总电压增益,我们有一个通用表达式:仪表放大器公式

我想说的是,R4就是控制的REF,假如R4变大,后面这个项就变大。也就是说Vout是大的输出。

因此,它也会将减法器运放的输入拉向中间电源电压。

来看一个AD家的东西,看REF,以及看这个封装,为了就是达到极度的平衡。

这话我看不懂

好像是我们的计算模型里面,上下两个电阻是平衡的,所以不能超太多。然后你在REF上面加的东西,会变成阻抗,送回给正信号端口。接着就是信号的不平衡,导致我们的输出有问题。

后一级的放大器

理想情况下,差分放大器电路中的电阻应仔细选择,其比值应相同 (R2/R1 = R4/R3)。

这些比值有任何偏差都将导致不良的共模误差。差分放大器抑制这种共模误差的能力以共模抑制比(CMRR) 来表示。

它表示输出电压如何随相同的输入电压(共模电压)而变化。

在最佳情况下,输出电压不应该改变,因为它只取决于两个输入电压之间的差值(最大 CMRR);但是,实际使用中情况会有所不同。CMRR 是差分放大器电路的重要特性,通常以 dB 来表示。

如果是精密放大,抑制共模信号在信号传输中降低噪声信号十分重要。

布局的时候应该尽可能的让电阻和电容尽可能的小,尽可能的平衡

在另外一个数据手册就把这个公式写成比值了

使用稳定的直流电压给仪表放大器供电。电源引脚上的噪声会对器件性能产生不利影响。 

尽可能靠近各电源引脚放置一个0.1 μF电容。因为高频时旁 路电容引线的长度至关重要,建议使用贴片电容。

旁路接地走线中的任何寄生电感会对旁路电容的低阻抗产生不利 影响。如图所示,离该器件较远的位置可以用一个10 μF 电容。对于在较低频率下发挥作用的较大电容,电流回路长度不是非常重要。大多数情况下,其它精密集成电路可以共享该10 μF电容。

输入偏置电流必须有一个对地的返回路径。如图所示,使用浮动信号源(如热电偶)时,因为无电流返回路径,所以需建立电流返回路径。

输入端的过滤器

这个地方其实有一段精彩的噪音计算,我就不说了。

看这个,我们一般是差分转单端,现在是差分转差分

差分转单端,提高CMR,然后连接在ADC。

再看一个差分驱动

显示如何利用AD8228来驱动差分ADC。AD8228结合 一个运算放大器和两个电阻来实现差分驱动。510 Ω电阻和 2200 pF电容将仪表放大器与典型SAR型转换器的开关电容前端产生的开关瞬变隔离。ADC与放大器之间的这些元件也会构成一个142 kHz的滤波器,用于提供抗混叠和噪声滤波功能。

这段瞎写了,我找不到它咋算的。

我发现了一个有趣的芯片!!!

REF基准使用于仪表放大器,可使用输出电压方便。
在一般的仪表放大器中,REF基准需要以低阻抗进行驱动,因此通常在电阻分压后用运算放大器等进行缓冲以达到低阻抗[图1-(B)]。如图1-(A)所示,采用电阻分割驱动的方法时,由于该分压电阻会破坏减法器电路的平衡,结果仪表放大器的同相噪声去除比下降,增益的精度下降,需要注意。
AD8237的REF基准具有特殊的体系结构。因此,即使通过电阻分割决定REF基准的电位,也不会损害性能。如果是增益高的构成,也可以直接连定电阻进接半固行调整。由此,可以削减从仪表放大器电路到REF基准所需的缓冲器用运算放大器。
此外,虽然AD8237的偏移电压极小,但在这里也可以进行偏移调整。

这个片子很厉害呀!
间接电流反馈体系结构的体系结构的优点,该体系结构允许在高增益设置下实现理想的钻石图,从而允许设计相对于输入共模电压(VCM)的宽范围输出电压(VOUT)。

AD8237是少数几种仪器放大器之一,适用于大多数配置的理想钻石图。如图3中的G=100)下,如图中的图形条件所示,AD8237的钻石图是一个简单的正方形。具有此类钻石图形特性的AD8237可以在等于或略高于电源电压的共模电压下完全放大微小信号。

我是喜欢我这个光的

坐等台风来

今天就写到这里吧,我去搭电路玩了。

https://www.cytech.com/technical-articles/low-consumption-high-precision-instrumentation-amplifier-ad8237-doesnt-suffer
https://www.analog.com/cn/technical-articles/increasing-the-common-mode-rejection-ratio-of-differential-amp.html
https://zh.wikipedia.org/zh-hans/%E5%85%B1%E6%A8%A1%E6%8A%91%E5%88%B6%E6%AF%94
http://www.enroo.com/support/category1/dpjrmzs/50827148.html
https://e2echina.ti.com/support/amplifiers/f/amplifiers-forum/68002/ref

评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 85浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 65浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 62浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 64浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦