TC3xx芯片DMU介绍

原创 汽车电子嵌入式 2023-08-31 08:00

前言

AUTOSAR架构图下的Fls模块对上(Fee)模块提供统一的标准接口,但是具体的实现因不同的芯片而不一样,Infineon公司的Fls模块通过操作TC3xx芯片的DMU模块实现Fls的功能。在具体介绍Fls模块的功能之前,有必要先介绍下TC3xx芯片的DMU模块。本文就来详细介绍下TC37x芯片的DMU功能,希望能搞清楚以下问题:

问题1:站在软件实现的角度来看,如何通过DMU实现读,写,擦除DFlash

问题2:站在软件实现的角度来看,如何通过DMU监控读,写,擦除DFlash等任务完成的?

问题3:站在软件实现的角度来看,如何通过DMU监控读,写,擦除DFlash等任务出现Error的?

问题4:站在软件实现的角度来看,在监控到读,写,擦除DFlash等任务出现Error后如何恢复重来?

Note: 作者对芯片的各种模块的硬件接口或者功能实现也不是很理解(非电子信息专业出身,属于半路出家的半吊子……),但是站在软件开发者的角度来看,个人理解,操作芯片模块基本就是操作芯片模块的控制寄存器来达到想要的功能,轮询芯片的状态寄存器判断控制命令是否完成,监控Error寄存器看是否发生错误(发送错误后一般通知上层后尝试重置芯片模块功能)。对于软件开发者,搞清楚上述四个问题其实就是搞清楚在上述问题的上下文中如何控制和监控寄存器。

缩略词

简写

全称

DMU

Data Memory Unit

DPI

Direct Processor Interface (to Local Flash Bank)

FSI

Flash Standard Interface

SRI

Shared Resource Interconnect

SIF

Slave Interface


正文


1.DMU硬件架构

CPU通过SRI总线能够访问/控制DMUDMU通过FSI接口能够控制DFLASHCPU访问/控制DMU可以通过软件(我们写代码)实现,DMU通过FSI访问/控制DFLASH是硬件实现(软件不不参与,软件发错命令序列后只能轮询DMU的状态寄存器来获取DMU访问/操作DFLASH的结果)。

 

1Non Volatile Memory (NVM) Subsystem

 

2Block diagram of DMU module

 

3Block Diagram of the NVM module


2.DMU寄存器

DMU模块相关的寄存器很多,这里我们只要了解DMU相关的控制,状态,错误状态三个寄存器就能理解绝大部分的功能。


 

2.1 DMU状态寄存器

HF_STATUS状体寄存器,标识当前Flash的状态。比如,标识当前Flash是否在Page Mode(擦写Flash时必须在这个模式下),Flash当前是否BusyFlash是否正在处理上一次的擦写任务)。


 

D0BUSY: 标识DFlash0是否处于Busy状态。

D1BUSY: 标识DFlash1是否处于Busy状态。

 


Fls在进行硬件操作前,会检查DFlash是否Busy,如果Busy的话就不进行任何操作。

 

DFPAGE: 标识DFlash是否处于Page Mode

DFPAGE: 标识PFlash是否处于Page Mode

 

Fls在执行Write sequence前都要先进入到Page Mode

 


Note: 进入Page Mode后,Flash模块才能够接收写入的数据


2.2 DMU控制寄存器

DMU控制寄存器HF_CONTROL并不是用来直接操作数据的写入和擦除(数据的写入和擦除由Command Sequence实现,后面章节介绍),而是用来控制/使能一些Flash的全局功能(后面遇到了再展开介绍)。

 

 

 

 


2.3 错误状态寄存器

HF_ERRSR错误状态寄存器标识当前Flash有没有发生错误。对每个错误类型的具体解释和检测到错误后建议的软件操作请参考后面的错误处理章节。

 

 

 

 


Fls模块在执行Flash写操作前也会先检查Flash有没有Error产生,如果有Error产生,则不进行任何操作。

 


3.DMU命令序列

3.1 Flash

Flash的读访问是Memory mapped read,什么意思了?比如我们要读0xAF001234这个起始地址处的一个uint32的数据,我们可以直接操作内存进行读:


uint32 Value = *((uint32 *)0xAF001234);

 


3.2 Flash

但是对于Flash的写(Programming)和擦除(Erase)操作不能直接操作内存,需要通过特定的命令序列(Command Sequence),比如以下的操作就是无效的。

*((uint32 *)0xAF001234) = 0xFFFF;

实际对DFlash的写操作需要一组命令序列(Command Sequences)来实现。DMU会把者一组命令序列翻译过来去完成对DFlash的写操作。写的过程中的状态和错误通过HF_STATUSHF_ERRSR寄存器标识。DMU提供了一些Command Sequence供开发者使用。

 

 


我们来分析一个Write PageCommand Sequence


第一步:把PA(缓存要写入数据的变量的地址)加载到DFlash Base Address + 0xAA50


 

第二步:把xx00Hxx标识的部分被忽略)这个值加载到DFlash Base Address + 0xAA58


第三步:把xxA0Hxx标识的部分被忽略)这个值加载到DFlash Base Address + 0xAA58


第四步:把xxAAHxx标识的部分被忽略)这个值加载到DFlash Base Address + 0xAA58


执行Write Page需要注意:

1.Write Page命令序列需要在Load Page命令序列之后执行


2.执行完Write Page命令序列后,Page Mode的标志就会在HF_STATUS状态寄存器中被设置


3.如果Flash不在Page Mode下执行Write Page操作,那么HF_ERRSR错误状态寄存器的Sequence Error(SQER)标志就会被置位,如果PA地址值不在合肥的地址范围内,SQER标志也会被置位。


4. 如果进入Page  Mode后数据太少,则没有数据或太多数据通过“Load Page”传输到程序集缓冲区,“Wrte Page”会对页面进行编程,但会设置序列错误 (SQER)。 缺少的数据是使用程序集缓冲区的先前内容进行编程的


5. 当页面“ PA ”位于具有有效写入保护的Sector中,或者Flash模块具有有效的全局读取保护时,Write Page就会执行失败并设置保错误 Protection Error(PROER)


6.当写入(Programming)过程中出现错误,PVER错误标志就会被设置


7.如果DMU处于Cranking Mode或者Error Mode,执行Write Page命令序列就会产生Sequence Error(SQER).

 

 


Write Page在代码中的体现:

 


Note:

1.不要问为什么是这样来实现对DFlash的操作,这是人家芯片厂商规定的,我们照着做就行。


2.命令序列很多,遇到了想了解的话,就按照Write Page这个分析过程去分析就行


4.DMU错误处理

Infineon的芯片手册中对每一种Error产生原因和出现Error后建议的操作都写的非常详细,我们能找到地方并理解就好,这里仅介绍Sequence Error(SQER),其他自己去查手册就好。


Sequence Error(SQER)产生的原因:


1.Comman的地址或者数据不正确,也就是没有按照规定的Command Sequence来操作Flash


2.DMU处于Page Mode时又尝试进入Page Mode


3.Load Page命令序列不在Page Mode下执行


4.Load Page命令序列混合32/64操作


……太多了,参考<< AURIXTC3XX_um_part1_v2.0.pdf>>以下章节

 


出现问题后怎么处理:

SQER错误通常就是软件Bug导致的,所有我们把软件写好,这些问题就不会出现。如果出现了这些Error,应该把Error信息通知到应用代码。但是,可以使用“Clear Status”或“Reset to Read”命令序列清除此标志,然后可以再次发出更正后的命令序列。

 


5.DMU中断和Trap

5.1中断

DMU在以下截图的事件触发时可以触发中断,中断使能和中断处理函数需要我们去配置和实现,然后可以通过中断来判断事件完成或错误发生。但是,对Flash操作的状态获取和错误获取一般采用轮询的方式实现。

 


5.2Trap

同样,DMU外设报告以下的Fatal Errors会触发CPU进入Trap

 


Note: 这些了解就好,好像在实际工程中没有使用DMU中断,也没去管DMU Trap,回头再仔细研究下。


6.总结

这篇文章的所有内容都可以在Infineon的数据手册中找到,但是对于初学者或者对硬件手册不熟悉的朋友不容易抓到重点(动不动一个章节就是几十上百页的英文,确实看着就头疼),所以作者结合代码梳理出个人认为对于软件开发者最为重要的内容,希望各位对各位看官有所帮助,也希望对各位新人苦于看数据手册有所启发。


最后,咱们来来回答开头提出的问题结束本文。


问题1:站在软件实现的角度来看,如何通过DMU实现读,写,擦除DFlash

答:通过Load PageWrite Page命令序列实现写操作;通过Erase Logical Sector Range命令序列实现擦除操作;通过Memory mapped read直接读Flash


问题2:站在软件实现的角度来看,如何通过DMU监控读,写,擦除DFlash等任务完成的?

答:通过监控HF_STATUSD0BUSY/D1BUS标志来监控擦写操作,读不用监控,直接读取就行。


问题3:站在软件实现的角度来看,如何通过DMU监控读,写,擦除DFlash等任务出现Error

的?

答:通过监控HF_ERRSR错误状态寄存器的错误标志来监控读,写,擦除DFlash等任务出现Error

类型。


问题4:站在软件实现的角度来看,在监控到读,写,擦除DFlash等任务出现Error后如何恢复重来?

答:太多,这里就不在细讲,具体参考数据手册的Error Handing章节。



End

「汽车电子嵌入式在CSDN上同步推出AUTOSAR精进之路专栏,本专栏每个模块完全按实际项目中开发及维护过程来详细介绍。模块核心概念介绍、实际需求描述、实际工程配置、特殊需求介绍及背后原理、实际工程使用经验总结。 目的是让读者看完每一个章节后能理解原理后根据需求完成一个模块的配置或者解决一个问题。」


点击文章最后左下角的阅读原文可以获取更多信息


或者复制如下链接到浏览器获取更多信息

https://blog.csdn.net/qq_36056498/article/details/132125693


推荐阅读

汽车电子嵌入式精彩文章汇总第一期:20210530-20230703

AUTOSAR 架构下EcuM唤醒源事件详解

AUTOSAR架构下NVM Block连续写及Default Value问题分析

AUTOSAR架构下NvM源码详细分析

TC37x芯片FLASH基本概念介绍

AUTOSAR架构下Fee详细分析

AUTOSAR架构下报文掉线超时不上报问题分析

Classic Autosar下的以太网通讯架构概览

End




欢迎点赞,关注,转发,在看,您的每一次鼓励,都是我最大的动力!

汽车电子嵌入式

微信扫描二维码,关注我的公众号

评论 (0)
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 82浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 181浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 116浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 121浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 89浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 161浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 111浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 52浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 29浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 158浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 84浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 56浏览
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 56浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 115浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦