帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
干货|盘点常见电机控制算法
电子工程世界
2023-08-31 07:30
年终搞个特价示波器奖励员工?
泰克电源、数字万用表、探头大促
市面上常见的电机有很多种,按照工作电源分类,可分为交流电机和直流电机,直流电机又可大致分为有刷直流电机和无刷直流电机。按照结构和工作原理划分则可将电机分为异步电动机和同步电动机等等。这些电机的控制算法是怎样的?跟着我们一起盘点下吧!
BLCD电机控制算法
无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。
BLDC电机控制要求了解电机进行整流转向的转子位置和机制。对于闭环速度控制,有两个附加要求,即对于转子速度/或电机电流以及PWM信号进行测量,以控制电机速度功率。
BLDC电机可以根据应用要求采用边排列或中心排列PWM信号。大多数应用仅要求速度变化操作,将采用6个独立的边排列PWM信号。这就提供了最高的分辨率。如果应用要求服务器定位、能耗制动或动力倒转,推荐使用补充的中心排列PWM信号。
为了感应转子位置,BLDC电机采用
霍尔效应传感器
来提供绝对定位感应。这就导致了更多线的使用和更高的成本。无传感器BLDC控制省去了对于霍尔传感器的需要,而是采用电机的反电动势(电动势)来预测转子位置。无传感器控制对于像风扇和泵这样的低成本变速应用至关重要。在采有BLDC电机时,冰箱和空调压缩机也需要无传感器控制。
空载时间的插入和补充
大多数BLDC电机不需要互补的PWM、空载时间插入或空载时间补偿。可能会要求这些特性的BLDC应用仅为高性能BLDC伺服电动机、正弦波激励式BLDC电机、无刷AC、或PC同步电机。
控制算法
许多不同的控制算法都被用以提供对于BLDC电机的控制。典型地,将功率晶体管用作线性稳压器来控制电机电压。当驱动高功率电机时,这种方法并不实用。高功率电机必须采用PWM控制,并要求一个微控制器来提供起动和控制功能。
控制算法必须提供下列三项功能:
用于控制电机速度的PWM电压
用于对电机进整流换向的机制
利用反电动势或霍尔传感器来预测转子位置的方法
脉冲宽度调制仅用于将可变电压应用到电机绕组。有效电压与PWM占空度成正比。当得到适当的整流换向时,BLDC的扭矩速度特性与一下直流电机相同。可以用可变电压来控制电机的速度和可变转矩。
功率晶体管的换向实现了定子中的适当绕组,可根据转子位置生成最佳的转矩。在一个BLDC电机中,MCU必须知道转子的位置并能够在恰当的时间进行整流换向。
BLDC电机的梯形整流换向
对于直流无刷电机的最简单的方法之一是采用所谓的
梯形整流换向
。
图
1
:用于
BLDC
电机的梯形
控制器的简化框架
在这个原理图中,每一次要通过一对电机终端来控制电流,而第三个电机终端总是与电源电子性断开。
嵌入大电机中的三种霍尔器件用于提供数字信号,它们在60度的扇形区内测量转子位置,并在电机控制器上提供这些信息。由于每次两个绕组上的电流量相等,而第三个绕组上的电流为零,这种方法仅能产生具有六个方向共中之一的电流空间矢量。随着电机的转向,电机终端的电流在每转60度时,电开关一次(整流换向),因此电流空间矢量总是在90度相移的最接近30度的位置。
图
2
:梯形控制:驱动波形和整流处的转矩
因此每个绕组的电流波型为
梯形
,从零开始到正电流再到零然后再到负电流。
这就产生了电流空间矢量,当它随着转子的旋转在6个不同的方向上进行步升时,它将接近平衡旋转。
在像空调和冰霜这样的电机应用中,采用霍尔传感器并不是一个不变的选择。在非联绕组中感应的反电动势传感器可以用来取得相同的结果。
这种梯形驱动系统因其控制电路的简易性而非常普通,但是它们在整流过程中却要遭遇转矩纹波问题。
BDLC电机的正弦整流换向
梯形整流换向还不足以为提供平衡、精准的无刷直流电机控制。这主要是因为在一个三相无刷电机(带有一个正统波反电动势)中所产生的转矩由下列等式来定义:
转轴转矩= Kt [IRSin(o) + ISSin(o+120) +ITSin(o+240)]
其中:
o为转轴的电角度
Kt为电机的转矩常数
IR, IS和IT为相位电流
如果相位电流是正弦的:IR = I0Sino; IS = I0Sin (+120o); IT = I0Sin (+240o)
将得到:
转轴转矩= 1.5I0*Kt(一个独立于转轴角度的常数)
正弦整流换向无刷电机控制器努力驱动三个电机绕组,其三路电流随着电机转动而平稳的进行正弦变化。选择这些电流的相关相位,这样它们将会产生平稳的转子电流空间矢量,方向是与转子正交的方向,并具有不变量。这就消除了与北形转向相关的转矩纹波和转向脉冲。
为了随着电机的旋转,生成电机电流的平稳的正弦波调制,就要求对于转子位置有一个精确有测量。霍尔器件仅提供了对于转子位置的粗略计算,还不足以达到目的要求。基于这个原因,就要求从编码器或相似器件发出角反馈。
图
3
:
BLDC
电机正弦波控制器的简化框图
由于绕组电流必须结合产生一个平稳的常量转子电流空间矢量,而且定子绕组
的每个定位相距120度角,因此每个线组的电流必须是正弦的而且相移为120度。采用编码器中的位置信息来对两个正弦波进行合成,两个间的相移为120度。然后,将这些信号乘以转矩命令,因此正弦波的振幅与所需要的转矩成正比。结果,两个正弦波电流命令得到恰当的定相,从而在正交方向产生转动定子电流空间矢量。
正弦电流命令信号输出一对在两个适当的电机绕组中调制电流的P-I控制器。
第三个转子绕组中的电流是受控绕组电流的负和,因此不能被分别控制。每个P-I控制器的输出被送到一个PWM调制器,然后送到输出桥和两个电机终端。应用到第三个电机终端的电压源于应用到前两个线组的信号的负数和,适当用于分别间隔120度的三个正弦电压。
结果,实际输出电流波型精确的跟踪正弦电流命令信号,所得电流空间矢量平稳转动,在量上得以稳定并以所需的方向定位。
一般通过梯形整流转向,不能达到稳定控制的正弦整流转向结果。然而,由于其在低电机速度下效率很高,在高电机速度下将会分开。这是由于速度提高,电流回流控制器必须跟踪一个增加频率的正弦信号。同时,它们必须克服随着速度提高在振幅和频率下增加的电机的反电动势。
由于P-I控制器具有有限增益和频率响应,对于电流控制回路的时间变量干扰将引起相位滞后和电机电流中的增益误差,速度越高,误差越大。这将干扰电流空间矢量相对于转子的方向,从而引起与正交方向产生位移。
当产生这种情况时,通过一定量的电流可以产生较小的转矩,因此需要更多的电流来保持转矩。效率降低。
随着速度的增加,这种降低将会延续。在某种程度上,电流的相位位移超过90度。当产生这种情况时,转矩减至为零。通过正弦的结合,上面这点的速度导致了负转矩,因此也就无法实现。
AC电机算法
标量控制
标量控制(或V/Hz控制)是一个控制指令电机速度的简单方法
指令电机的稳态模型主要用于获得技术,因此瞬态性能是不可能实现的。系统不具有电流回路。为了控制电机,三相电源只有在振幅和频率上变化。
矢量控制或磁场定向控制
在电动机中的转矩随着定子和转子磁场的功能而变化,并且当两个磁场互相正交时达到峰值。在基于标量的控制中,两个磁场间的角度显著变化。
矢量控制设法在AC电机中再次创造正交关系。为了控制转矩,各自从产生磁通量中生成电流,以实现DC机器的响应性。
一个AC指令电机的矢量控制与一个单独的励磁DC电机控制相似。在一个DC电机中,由励磁电流IF所产生的磁场能量Φ F与由电枢电流IA所产生的电枢磁通ΦA正交。这些磁场都经过去耦并且相互间很稳定。因此,当电枢电流受控以控制转矩时,磁场能量仍保持不受影响,并实现了更快的瞬态响应。
三相AC电机的磁场定向控制(FOC)包括模仿DC电机的操作。所有受控变量都通过数学变换,被转换到DC而非AC。其目标的独立的控制转矩和磁通。
磁场定向控制(FOC)有两种方法:
直接FOC:
转子磁场的方向(Rotor flux angle) 是通过磁通观测器直接计算得到的。
间接FOC:
转子磁场的方向(Rotor flux angle) 是通过对转子速度和滑差(slip)的估算或测量而间接获得的。
矢量控制要求了解转子磁通的位置,并可以运用终端电流和电压(采用AC感应电机的动态模型)的知识,通过高级算法来计算。然而从实现的角度看,对于计算资源的需求是至关重要的。
可以采用不同的方式来实现矢量控制算法。前馈技术、模型估算和自适应控制技术都可用于增强响应和稳定性。
AC电机的矢量控制:深入了解
矢量控制算法的核心是两个重要的转换:
Clark转换,Park转换和它们的逆运算。
采用Clark和Park转换,带来可以控制到转子区域的转子电流。这种做充许一个转子控制系统决定应供应到转子的电压,以使动态变化负载下的转矩最大化。
Clark转换:
Clark数学转换将一个三相系统修改成两个坐标系统:
其中Ia和Ib正交基准面的组成部分,Io是不重要的homoplanar部分
图
4
:三相转子电流与转动参考系的关系
Park转换:
Park数学转换将双向静态系统转换成转动系统矢量
两相α, β帧表示通过Clarke转换进行计算,然后输入到矢量转动模块,它在这里转动角θ,以符合附着于转子能量的d, q帧。根据上述公式,实现了角度θ的转换。
AC电机的磁场定向矢量控制的基本结构
Clarke变换采用三相电流IA, IB 以及 IC,来计算两相正交定子轴的电流Isd和 Isq。这两个在固定座标定子相中的电流被变换成Isd 和Isq,成为Park变换d, q中的元素。其通过电机通量模型来计算的电流Isd, Isq 以及瞬时流量角θ被用来计算交流感应电机的电动扭矩。
图
2
:矢量控制交流电机的基本原理
这些导出值与参考值相互比较,并由PI控制器更新。
基于矢量的电机控制的一个固有优势是,可以采用同一原理,选择适合的数学模型去分别控制各种类型的AC, PM-AC 或者 BLDC电机。
BLDC电机的矢量控制
BLDC电机是磁场定向矢量控制的主要选择。采用了FOC的无刷电机可以获得更高的效率,最高效率可以达到95%,并且对电机在高速时也十分有效率。
步进电机控制算法
如下是步进电机控制示意图:
步进电机控制通常采用双向驱动电流,其电机步进由按顺序切换绕组来实现。通常这种步进电机有3个驱动顺序:
1、单相全步进驱动:
在这种模式中,其绕组按如下顺序加电,AB/CD/BA/DC (BA表示绕组AB的加电是反方向进行的)。这一顺序被称为单相全步进模式,或者波驱动模式。在任何一个时间,只有一相加电。
2、双相全步进驱动:
在这种模式中,双相一起加电,因此,转子总是在两个极之间。此模式被称为双相全步进,这一模式是两极电机的常态驱动顺序,可输出的扭矩最大。
3、半步进模式:
这种模式将单相步进和双相步进结合在一起加电:单相加电,然后双相加电,然后单相加电…,因此,电机以半步进增量运转。这一模式被称为半步进模式,其电机每个励磁的有效步距角减少了一半,其输出的扭矩也较低。
以上3种模式均可用于反方向转动(逆时针方向),如果顺序相反则不行。
通常,步进电机具有多极,以便减小步距角,但是,绕组的数量和驱动顺序是不变的。
通用DC控制算法
通用电机的速度控制,特别是采用2种电路的电机:
1、相角控制
2、PWM斩波控制
相角控制
相角控制是通用电机速度控制的最简单的方法。通过TRIAC的点弧角的变动来控制速度。相角控制是非常经济的解决方案,但是,效率不太高,易于电磁干扰(EMI)。
通用电机的相角控制
以上示图表明了相角控制的机理,是TRIAC速度控制的典型应用。TRIAC门脉冲的周相移动产生了有效率的电压,从而产生了不同的电机速度,并且采用了过零交叉检测电路,建立了时序参考,以延迟门脉冲。
PWM斩波控制
PWM控制是通用电机速度控制的,更先进的解决方案。在这一解决方案中,功率MOFSET,或者IGBT接通高频整流AC线电压,进而为电机产生随时间变化的电压。
通用电机的
PWM
斩波控制
其开关频率范围一般为10-20 KHz,以消除噪声。这一通用电机的控制方法可以获得更佳的电流控制和更佳的EMI性能,因此,效率更高。
推荐阅读
干货 | 轻松学会步进电机
干货 | 信号的相关运算及在单片机程序运用中算法分析
干货 | 单片机I/O口驱动,为什么一般都选用三极管而不是MOS管?
干货 | 六款简单的开关电源电路设计,内附原理图详解
干货 | 矿板运行SDK创建的PS简单工程
干货 | 终于将 IIC 通信协议弄明白了!
· END ·
登录阅读全文
电机控制算法
免责声明:
该内容由专栏作者授权发布或作者转载,目的在于传递更多信息,并不代表本网赞同其观点,本站亦不保证或承诺内容真实性等。若内容或图片侵犯您的权益,请及时联系本站删除。侵权投诉联系:
nick.zong@aspencore.com
!
电子工程世界
关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
进入专栏
评论
芯语
帖子
文库
下载
博文
“换帅”后的乾照光电,未来之路如何走?
JMInsights集摩咨询
2024-12-26
57浏览
摸透以太网的PHY、MAC及其通信接口
一口Linux
2024-12-26
55浏览
深度解读华为车BU业务
智能汽车设计
2024-12-26
55浏览
传镜头厂爆雷!停供OPPO、vivo等
EETOP
2024-12-26
54浏览
“温州鞋王”跨界半导体投资存储芯片业务!奥康国际第三季度亏损1亿元,董事长辞职
芯片之家
2024-12-26
51浏览
林肯中国即将消失,福特或已做好撤退准备
谈思汽车
2024-12-27
48浏览
京东方供屏!一加Ace5/5Pro发布,2299元起
WitDisplay
2024-12-26
43浏览
一加Ace5系列发布:性能凶猛,快人一代
Qualcomm中国
2024-12-26
42浏览
AEC-Q102标准下的混合气体测试
金鉴实验室李工
2024-12-10
80浏览
【富芮坤FR3068x-C】+基于MDK移植micropython - 新增pyb-LED支持
qinyunti
2024-12-18
520浏览
【2024年末活动】工程师写总结,送示波器、扫地机、稳压电源、平板手表、螺丝刀!
面包板社区管理员
2024-12-11
2048浏览
STM32F030K6 QFN32的PACK芯片支持薄有吗,帮忙发下,谢谢
QWE4562009
2024-12-13
1086浏览
《高速PCB设计经验规则应用实践》+自身理解
Dramondogou
2024-12-19
612浏览
【富芮坤FR3068x-C】+开发环境构建及问题
jinglixixi_457498010
2024-12-15
823浏览
SMAJ15CA-TP 瞬态抑制二极管特点及应用案例
sales_263623713
2024-12-12
275浏览
【电子DIY】+ 我是电子圈里最牛的点灯大师、最亮的仔!
ecoren
2024-12-16
1313浏览
图中的5V输出具体是怎么实现的?
wuliangu
2024-12-18
587浏览
过流保护,大家都会采集电流后经过运放放大送单片机,单片机控制MOS,从而保护后级电路。那短路保护,大家都是怎么做的。现在遇到一个问题,...
QWE4562009
2024-12-24
55浏览
是德科技光通信技术测试解决方案,助力产业升级
益莱储
2024-12-10
83浏览
YD925为小家电而来
vical86
2024-12-18
703浏览
【年终福利大派送】就在这场年度开发者技术盛宴!
Aspencore-Event-
2024-12-11
393浏览
【工程师故事】+2024年:跟大家说说我从工程师到教师的跨界之旅
甜椒的尾巴
2024-12-24
597浏览
【工程师故事】嵌入式老鸟平凡又不平凡的一年又一年-以及个人嵌入式生涯回顾与建议
qinyunti
2024-12-13
1912浏览
基于单片机自动电阻测试仪设计论文
所需E币: 5
2024-12-25 16:05
大小: 1.03MB
上传者:
木头1233
基于变频器和组态软件的电梯控制系统设计
所需E币: 5
2024-12-25 16:00
大小: 1.35MB
上传者:
木头1233
基于单片机数控直流稳压电源设计
所需E币: 5
2024-12-25 16:05
大小: 1.13MB
上传者:
木头1233
12-13学习笔记
所需E币: 1
2024-12-14 20:57
大小: 2.73MB
上传者:
youyeye
基于51单片机的数字万用表设计论文
所需E币: 5
2024-12-25 15:58
大小: 786.69KB
上传者:
木头1233
基于单片机简易照明线路探测仪设计
所需E币: 5
2024-12-25 16:04
大小: 490.82KB
上传者:
木头1233
擎天柱8051U功德箱例程
所需E币: 5
2024-12-25 10:17
大小: 77.46KB
上传者:
丙丁先生
PC机与多台单片机实时通信系统设计论文
所需E币: 5
2024-12-25 15:54
大小: 174.5KB
上传者:
木头1233
12-12学习笔记
所需E币: 1
2024-12-13 23:20
大小: 2.7MB
上传者:
youyeye
元能芯24V全集成电机专用开发板
所需E币: 0
2024-12-23 13:59
大小: 26.09MB
上传者:
奔跑的红烧肉
基于单片机的硬币识别器设计论文
所需E币: 5
2024-12-25 16:04
大小: 6.21MB
上传者:
木头1233
基于单片机智能时钟毕业设计论文
所需E币: 5
2024-12-25 16:05
大小: 1.09MB
上传者:
木头1233
卡尔曼滤波估计小车匀加速运动时的速度状态
所需E币: 5
2024-12-18 17:15
大小: 1.84MB
上传者:
梦沉书远
基于Labview的家居控制平台设计论文
所需E币: 5
2024-12-25 15:58
大小: 1.07MB
上传者:
木头1233
基于单片机的小车设计毕业论文
所需E币: 5
2024-12-25 16:02
大小: 259.55KB
上传者:
木头1233
自动驾驶第一股的转型迷途:图森未来赌上了AIGC
图森未来的“夺权之争”拉扯了这么久,是该画上句号了。大约9年前,侯晓迪、陈默、郝佳男等人共同创立了图森未来,初衷是以L4级别的无人驾驶卡车技术为全球物流运输行业赋能。此后,先后获得了5轮融资,累计融资额超过6.5亿美元,并于2021年成功在美国纳斯达克上市,成为全球自动驾驶第一股。好景不长,2023年市场屡屡传出图森未来裁员、退市的消息。今年1月份,图森未来正式宣布退市,成为了全球首个主动退市的自动驾驶公司。上市匆匆退市也匆匆,其背后深层原因在于高层的频繁变动以及企业的转型调整。最近,图森未来的
刘旷
2024-12-27 10:23
58浏览
工程师职场现状调研:洞察行业趋势,解锁职业发展密码
引言工程师作为推动科技进步和社会发展的核心力量,在各个领域发挥着关键作用。为深入了解工程师的职场现状,本次调研涵盖了不同行业、不同经验水平的工程师群体,通过问卷调查、访谈等方式,收集了大量一手数据,旨在全面呈现工程师的职场生态。1. 工程师群体基本信息行业分布:调研结果显示,工程师群体广泛分布于多个行业,其中制造业占比最高,达到 90%,其次是信息技术、电子通信、能源等行业。不同行业的工程师在工作内容、技术要求和职业发展路径上存在一定差异。年龄与经验:工程师群体以中青年为主,30 - 45 岁年
Jeffreyzhang123
2024-12-27 17:39
75浏览
进一步优化采购与分销?与时俱进!
采购与分销是企业运营中至关重要的环节,直接影响到企业的成本控制、客户满意度和市场竞争力。以下从多个方面介绍如何优化采购与分销:采购环节优化供应商管理供应商评估与选择:建立一套全面、科学的供应商评估体系,除了考虑价格因素,还要综合评估供应商的产品质量、交货期、信誉、研发能力、售后服务等。通过多维度评估,选择那些能够提供优质产品和服务,且与企业战略目标相契合的供应商。建立长期合作关系:与优质供应商建立长期稳定的合作关系,这种合作模式可以带来诸多好处。双方可以在信任的基础上进行深度沟通与协作,共同开展
Jeffreyzhang123
2024-12-27 17:43
67浏览
工业电子:驱动现代制造业的核心力量
在当今科技飞速发展的时代,工业电子作为现代制造业的中流砥柱,正以前所未有的速度推动着各个行业的变革与进步。从汽车制造到航空航天,从智能家居到工业自动化,工业电子的身影无处不在,为我们的生活和生产带来了巨大的改变。工业电子的崛起与发展工业电子的发展历程可谓是一部波澜壮阔的科技进化史。追溯到上世纪中叶,电子技术开始逐渐应用于工业领域,最初主要是简单的电子控制装置,用于提高生产过程的自动化程度。随着半导体技术、计算机技术和通信技术的不断突破,工业电子迎来了爆发式的增长。集成电路的发明使得电子设备的体积
Jeffreyzhang123
2024-12-27 15:40
71浏览
游戏体验天花板,一加 Ace 5 系列售价 2299 元起
在科技日新月异的今天,智能手机已不再仅仅是通讯工具,它更成为了我们娱乐、学习、工作的核心设备。特别是在游戏体验方面,用户对于手机的性能要求愈发严苛,追求极致流畅与沉浸感。正是基于这样的市场需求,一加品牌于2024年12月26日正式推出了其最新的游戏性能旗舰——一加 Ace 5系列,包括一加 Ace 5与一加 Ace 5 Pro两款力作。这一系列深度聚焦于性能与游戏体验,旨在为用户带来前所未有的游戏盛宴。骁龙8系旗舰平台,性能跃升新高度
科技财经汇
2024-12-26 22:31
75浏览
探秘 PCB:电子世界的基石
在当今这个数字化的时代,电子设备无处不在,从我们手中的智能手机、随身携带的笔记本电脑,到复杂的工业控制系统、先进的医疗设备,它们的正常运行都离不开一个关键的 “幕后英雄”—— 印刷电路板(Printed Circuit Board,简称 PCB)。PCB 作为电子设备中不可或缺的重要部件,默默地承载着电子元件之间的连接与信号传输,是整个电子世界的基石。揭开 PCB 的神秘面纱PCB,简单来说,就是一块由绝缘材料制成的板子,上面通过印刷、蚀刻等工艺形成了导电线路和焊盘,用于固定和连接各种电子元件。
Jeffreyzhang123
2024-12-27 17:21
56浏览
物联网:连接万物,开启智能新时代
在当今这个科技飞速发展的时代,物联网(IoT)已经不再是一个陌生的概念,它正以一种前所未有的速度改变着我们的生活和工作方式,像一股无形的力量,将世界紧密地连接在一起,引领我们步入一个全新的智能时代。物联网是什么简单来说,物联网就是通过感知设备、网络传输、数据处理等技术手段,实现物与物、人与物之间的互联互通和智能化管理。想象一下,你的家里所有的电器都能 “听懂” 你的指令,根据你的习惯自动调节;工厂里的设备能够实时监测自身状态,提前预警故障;城市的交通系统可以根据实时路况自动优化信号灯,减少拥堵…
Jeffreyzhang123
2024-12-27 17:18
57浏览
汽车电子:引领未来出行的变革力量
在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
Jeffreyzhang123
2024-12-27 11:53
83浏览
FPGA的前世今生:
发明阶段(20世纪80年代至90年代)起源:当时ASIC设计成本高,周期长,流片失败率高,业界需要一种通用的半导体器件进行流片前测试和验证,可编程逻辑器件就此产生。诞生:1980年,Xilinx公司成立。1985年,Ross Freeman制造了第一片PFGA芯片XC2064,采用4输入,1输出的LUT和FF结合的基本逻辑单元。发展阶段(1992年至1999年)容量提升:FPGA容量不断上涨,芯片面积逐渐增大,为架构穿心提供空间,复杂功能可以实现。布线问题凸显:缩着芯片复杂度增加,片上资源的互连
Jeffreyzhang123
2024-12-27 10:26
84浏览
【工程师故事】2024即将过去,未来可期
一、前言 回首2024,对于我而言,是充满挑战与收获的一年。在这一年里,我积极参与了论坛的众多活动,不仅拓宽了我的认知边界(有些东西不是你做不到,而是你想不到),还让我在实践中收获了宝贵的经验和。同时,多种多样的论坛活动让我们全方面的接受新东西,连接新知识,多种类型的的活动交织了你我的2024。在这里说一说对过去一年的活动经历,进行一次年终总结,并谈谈我的收获和感受,以及对2025年的展望。二、活动足迹(一)快速体验:机智云Gokit2.0开发板初体验 机智云Gokit2.0开发板的体验活动让大
无言的朝圣
2024-12-27 14:50
56浏览
医疗电子:科技赋能,开启医疗新时代
在科技飞速发展的今天,医疗电子作为一个融合了医学与电子技术的交叉领域,正以前所未有的速度改变着我们的医疗模式和健康生活。它宛如一颗璀璨的明珠,在医疗领域绽放出耀眼的光芒,为人类的健康福祉带来了诸多惊喜与变革。医疗电子的神奇应用医疗电子的应用范围极为广泛,深入到医疗的各个环节。在诊断方面,各种先进的医学成像设备堪称医生的 “火眼金睛”。X 光、CT、MRI 等成像技术,能够清晰地呈现人体内部的结构和病变情况,帮助医生准确地发现疾病。以 CT 为例,它通过对人体进行断层扫描,能够提供比传统 X 光更
Jeffreyzhang123
2024-12-27 15:46
60浏览
紫光展锐推出RTOS旗舰智能穿戴平台W337,性能翻倍
近日,紫光展锐正式推出基于RTOS系统的旗舰产品W337,它拥有丰富特性和超低功耗,进一步壮大紫光展锐的智能穿戴产品组合,面向中高端和广阔的智能穿戴市场,提供先进的技术解决方案。 性能卓越,成就强悍RTOS穿戴芯 双核CPU架构:紫光展锐W337基于RTOS系统首创双核CPU架构,可根据系统的负载情况动态调整功耗,当系统负载较低时,降低一个或两个核心的频率和电压。由于有两个核心分担负载,每个核心的发热相对较低,进一步降低了系统整体的散热需求。双核架构更好地实现了负
紫光展锐
2024-12-26 18:13
70浏览
CPLD的发展历史
起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
Jeffreyzhang123
2024-12-27 10:41
67浏览
无人机现状调研:应用多元、技术升级与挑战并存
一、引言无人机,作为近年来迅速崛起的新兴技术产物,正以前所未有的速度改变着众多行业的运作模式,从民用领域的航拍、物流,到工业领域的测绘、巡检,再到军事领域的侦察、打击等,无人机的身影无处不在。为了深入了解无人机的现状,本次调研综合了市场数据、行业报告、用户反馈等多方面信息,全面剖析无人机的发展态势。二、市场规模与增长趋势随着技术的不断进步和成本的逐渐降低,无人机市场呈现出爆发式增长。近年来,全球无人机市场规模持续扩大,预计在未来几年内仍将保持较高的增长率。从应用领域来看,消费级无人机市场依然占据
Jeffreyzhang123
2024-12-27 17:29
85浏览
解锁供应链管理的密码:从混乱到有序的商业蜕变
在当今竞争激烈的商业世界中,供应链管理已成为企业生存与发展的核心竞争力之一。它就像一条无形的纽带,将供应商、制造商、分销商、零售商直至最终消费者紧密相连,确保产品和服务能够高效、顺畅地流转。今天,就让我们一同深入探索供应链管理的奥秘。供应链管理是什么简单来说,供应链管理是对从原材料采购、生产制造、产品配送直至销售给最终用户这一整个过程中,涉及的物流、信息流和资金流进行计划、协调、控制和优化的管理活动。它不仅仅是对各个环节的简单串联,更是一种通过整合资源、优化流程,实现整体效益最大化的管理理念和方
Jeffreyzhang123
2024-12-27 17:27
60浏览
电子工程世界
关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
文章:5460篇
粉丝:89人
私信
最近文章
新栏目:器件口碑专辑上线~呼唤各位老铁前来点评器件!
ASMLCEO:中国芯片制造技术落后西方10-15年
20家芯片巨头,一年能赚多少钱,有多少员工?
视频教程|手把手教你学嵌入式Linux异核通信开发
一文了解电路中电能传输方向
热门文章
广告
推荐
泰克电源、数字万用表、探头大促
低价玩转泰克
信号发生器PF1440
泰克年终盛典
如何提升高压系统的实时性能?
在线研讨会
多路有光·精准不凡——KSW-SGM01模拟信号源发布会
重塑机器人未来:揭秘创新芯片解决方案的颠覆力量
迈来芯Triaxis® 3D磁传感器:汽车安全应用的优选方案
适用于安全连接的新一代PIC32CK SG/GC系列单片机
EE直播间
精密半导体参数测试解决方案
直播时间:01月08日 10:00
E聘热招职位
资料
文库
帖子
博文
1
汽车动力与底盘MCU市场现状研究报告
2
《相对论》(美·爱因斯坦)
3
[14章附电子书]Springboot+ChatGLM 实战AI数字人面试官系统
4
20套大厂USP电路合集
5
《彩色电视机原理与维修》
6
ISO 7637-1-2023
7
12-13学习笔记
8
stm32OTG host文档说明
9
自动增益控制放大器设计与实现
10
基于51单片机的波形发生器课程设计
1
【工程师故事】+2024年:跟大家说说我从工程师到教师的跨界之旅
2
【工程师故事】嵌入式老鸟平凡又不平凡的一年又一年-以及个人嵌入式生涯回顾与建议
3
【2024年末活动】工程师写总结,送示波器、扫地机、稳压电源、平板手表、螺丝刀!
4
【电子DIY】+ 我是电子圈里最牛的点灯大师、最亮的仔!
5
【富芮坤FR3068x-C】+开发环境构建及问题
6
电流检测电路的两种电路
7
【富芮坤FR3068x-C】+上手及点灯
8
STM32F030K6 QFN32的PACK芯片支持薄有吗,帮忙发下,谢谢
1
进一步优化采购与分销?与时俱进!
2
工程师职场现状调研:洞察行业趋势,解锁职业发展密码
3
无人机现状调研:应用多元、技术升级与挑战并存
4
解锁供应链管理的密码:从混乱到有序的商业蜕变
5
探秘 PCB:电子世界的基石
6
物联网:连接万物,开启智能新时代
7
医疗电子:科技赋能,开启医疗新时代
8
工业电子:驱动现代制造业的核心力量
1
为什么时钟晶振一直用的是32.768KHZ,而不是其他的频率呢?
2
改善硅外延片电阻率和厚度
3
10种复杂电路分析方法,值得每一个工程师学习
4
认识单片机的中断系统
5
PIC单片机与DC-DC转换器电路设计
6
如何减少嵌入式软件代码bug?看看这些问题
7
传输线的特性阻抗
8
射频传导开关
9
经常用电感,那你知道电感的磁滞损耗和涡流损耗
10
汽车氧传感工作原理及其作用、损坏影响
分享到
评论
点赞
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
被传停供OPPO、vivo?中蓝电子这样回应……
人工智能前沿|2025 年影响工程的顶级趋势
高熔断电流保险丝:不得不说的二三事
起死回生?国产GPU厂商象帝先新一轮融资近了
台积电日本熊本厂开始量产,专注12~28nm逻辑芯片工艺
我要评论
0
分享到微信
点击右上角,分享到朋友圈
我知道啦
请使用浏览器分享功能
我知道啦
×
提示!
您尚未开通专栏,立即申请专栏入驻