三电平拓扑1—为什么要用三电平拓扑?

原创 Monster电子技术 2023-08-21 11:30

“Monster电子技术”专注分享电力电子技术、新能源等领域相关技术贴、行业资讯,更多信息,请点击关注公众号。


近年来,随着光伏逆变器以及储能行业的热度持续高涨,人们对高效太阳能逆变器、PCS等功率变换的需求越来越大,但低成本、高效率的解决方案是所有厂家永恒的追求。为了实现这一目标,不仅逆变器,连DCDC级的拓扑(例如MPPT电路)都必须是低成本和高效的。在传统的DCDC变换电路中,隔离拓扑大家通常选用LLC、移相全桥等实现开关管的软开关降低损耗,提升效率,而非隔离直流变换拓扑大部分都采用传统的两电平BuckBoost拓扑,或者采用多相交错减小电流纹波,或者采用DCM模式实现部分开关管的软开关提升效率,但是效果终究是有瓶颈的。

最近几年,越来越多的光伏产品开始选择使用三电平直流变换拓扑,三电平拓扑是什么?相比于两电平来说到底有哪些优势?在查阅众多资料后,小编尝试分期给大家进行介绍。

两电平和三电平的升压变换器通常用于光伏逆变器。相比于两电平的方案,三电平拓扑的解决方案能够降低半导体器件的电压应力和输出电压纹波,因此可以减小电感器的尺寸。由于三电平拓扑在运行时,开关电压电平是直流母线电压的一半,因此可以使用开关速度更快、成本更低的低压半导体。

1.  什么是三电平拓扑?

想要明白三电平拓扑,那还得从大家熟知的两电平拓扑说起,在之前的文章中【Monster学电子】开关电源必会拓扑-Boost,我们曾经介绍过两电平Boost拓扑的基本工作原理和关键器件参数的分析。在工作过程中,不论是Boost电路的下管还是上管,在开关管闭合时,电压应力都接近于0V,在断开时,电压应力都接近于输出电压Vout,开关管源极和漏极的电压只有两种电压模式,即0VVout,这就是为什么把传统的DCDC拓扑称为两电平的原因。

常见的三电平的拓扑有三种,分别是二极管钳位型、飞跨电容型、对称式三电平拓扑。本篇文章以飞跨电容型三电平拓扑(如图1)为例进行分析。所谓飞跨电容,即指跨接在D1D2中点和T1T2中点之间的电容CFC。飞跨电容升压拓扑结构通过飞跨电容(CFC)产生第三电压电平,充电至输出电压的一半。

图1 飞跨电容型三电平拓扑
三电平拓扑结构包括附加的第三电压电平。第三电压电平将升压电感、开关管和二极管两端的电压降低到两电平拓扑的一半。升压电感两端的较小电压具有的优点是,对于同样要求的纹波电流,所需的电感仅为两电平时所需电感的一半。因此减少了整个电感的体积、重量和成本。

2. 飞跨电容升压拓扑详细分析

在飞跨电容升压变换器中,换向回路包括电容器。从换向的角度来看,电容器可以被认为是零阻抗。它在换向回路中的主要作用是使两个外部半导体相互抵消。有了这个偏移,三电平飞跨电容升压变换器可以被视为两个独立的升压变换器,其中外部的换向回路包括直流母线电容、外部二极管、飞跨电容器和外部开关。内部换向回路包括飞跨电容器、内部二极管和内部开关。两个换向回路如图2所示。

图2 换向回路

一般来说,电压电平的数量理论上是无限的,但在实际中使用了三个、四个或五个电平。n电平解决方案中的附加电平可以通过在三电平转换器中添加额外的外部换相环路来实现。每个增加的升压变换器的换向回路将类似于图2上的绿色回路。电压电平的数量可以计算如下:

a 是换向回路的个数,飞跨电容的电压可以用下式计算:

b 是给定的换向单元的数量,第一个回路通常指最外层的回路。

在三电平飞跨电容升压变换器的工作中,有四种不同的模式。在正常运行过程中,飞跨电容的电压是输出电压的一半,并且电感电流是连续的。

在第一种模式中,两个开关管(T1T2)都断开,电流通过两个二极管,工作于续流模式。在这种模式下,飞跨电容的电压不变,电感电流减小,输出电压增大。

在第二种模式中,外侧开关管(T2)导通,电流对飞跨电容充电,其电压升高。

在第三种模式中,内侧开关管(T1)导通(T2)断开,电流通过飞跨电容向母线放电,飞跨电压降低,输出电压增加。


在第四种模式中,两个开关管都导通。飞跨电容的电压将保持不变,电感电流增加。


在连续导通模式(CCM)下,占空比(D)的计算方法和普通的两电平Boost拓扑一直。可表示为:

飞跨电容拓扑中的两个半导体开关管T1T2在相位相差180°下进行控制,但导通时间(占空比)相同。在D0.5时,T1 T2 永远不会同时导通,即不会工作在模式4。当占空比D0.5时,开关管T1T2不存在同时关断的工作模式1,所以工作的模式取决于占空比的大小。

如果𝐷 < 0.5,在这种情况下,不存在模式4,运行如下:

…→模式1→模式2→模式1→模式3→…

如果𝐷 > 0.5,运行将是:

…→模式4→模式2→模式4→模式3→…

如果𝐷 = 0.5

…→模式2→模式3→模式2→模式3→…

最常用的模式是当𝐷0.5

时间紧张,梳理不易,后续有机会将给大家继续深入介绍三电平拓扑的相关知识。

免责声明:本文素材来源于网络,免费传达知识,素材版权归原作者所有;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。


  • 免费领取干货【从零开始学电子技术系列丛书】

  • 近5年新能源汽车起火状态统计报告

  • 【Monster学电子】液体铝电解电容拆解

  • 【Monster学电子】19种5V转3.3V电路集锦!

  • 【Monster学电子】此电路为什么会烧坏Mos管?

  • 【Monster学电子】电压掉电监测电路

  • 【Monster学电子】电容器

  • 【Monster学电子】到底什么才是三极管的饱和状态?

  • 【Monster学电子】是否可以把0603电容换0402的电容

  • 【Monster学电子】详解MOS数据手册

  • 【Monster学电子】超火的MOS管电路工作原理及详解

  • 【Monster学电子】MOS管失效的六大原因

  • 【Monster学电子】元器件降额准则一览表

  • E系列电阻的常识

  • DC-DC和LDO如何选型?

  • 非常经典的余电快速泄放电路

  • 【可靠性设计】你的FMEA为什么做不好?

  • 【可靠性设计】可靠性测试中HALT实验与HASS实验的区别

  • 【可靠性设计】129页PPT详述可靠性基础知识

  • 【中国芯之路】国内大陆芯片70个细分领域重要代表企业!

  • 【中国芯之路】国产模拟IC芯片对比国外

  • 【中国芯之路】半导体封测 国内 VS 国外!

  • 【中国芯之路】国产电源IC替代国外

  • Tesla Model S电池系统拆解报告(一)

  • Tesla Model S电池系统拆解报告(二)

  • 浅析特斯拉Model S的采样板(上)

  • 浅析特斯拉Model S的采样板(中)

  • 浅析特斯拉Model S的采样板(下)

  • 上汽时代动力电池装配线

  • CPT技术VS刀片电池:谁主沉浮?

  • ABC入场|电动自行车铅改锂“磨刀霍霍”

  • 【EMC】共模干扰与差模干扰是什么?

  • 【EMC】关键电路EMC设计

  • 【EMC测试】辐射发射与传导发射

  • 【EMC测试】谐波电流与电压波动和闪变

  加入技术群  

加入硬件开发、动力电池、BMS、新能源相关微信交流群,扫描以下二维码添加小编微信申请入群。添加好友时请注明地区+从事行业。


评论
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 398浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 318浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 179浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 46浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 95浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 108浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 161浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 164浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 18浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 147浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 193浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦