如何在有限空间里实现高性能?结合最低特定RDS(On)与表面贴装技术是个好方法!

Qorvo半导体 2023-08-17 12:01
SiC FET在共源共栅结构中结合硅基MOSFET和SiC JFET,带来最新宽带隙半导体技术的性能优势,以及成熟硅基功率器件的易用性。SiC FET现可采用表面贴装TOLL封装,由此增加了自动装配的便利性,同时减少了元件尺寸,并达成出色的热特性,在功率转换应用中实现了功率密度最大化和系统成本最小化。




关键词

SiC FET、TOLL、封装、热、宽带隙、WB、碳化硅、SMT、表面贴装技术


宽带隙(WBG)半导体开关,如碳化硅共源共栅结构FET(以下简称“SiC FET”)和SiC MOSFET的性能与其封装密切相关。在纯技术层面,纳秒级的开关速度和较低的比导通电阻带来非常低的损耗;在相同的芯片尺寸下,可以处理比硅基材料高得多的电流水平。然而,对外界的热阻实际上限制了实际功率转换电路中的结温,而且任何引线电感都会影响可达到的开关速度,因此器件制造商提供了不同的封装技术,以根据应用要求获得最佳性能。


图1:Qorvo SiC FET——硅基MOSFET和SiC JFET的“共源共栅”结构。



不同的封装适合不同的应用

为什么SiC FET的最佳封装取方式决于具体应用?带有大tab接点的传统通孔引线封装(如TO-247样式)可能极具吸引力;其允许在使用硅基MOSFET甚至IGBT的现有设计中向后兼容。事实上,SiC共源共栅结构FET的一个重要优势是它与旧技术的引脚兼容和栅极驱动相似性,这使得仅需对电路元件进行微小改动便能轻松升级,从而显著提升效率或功率等级。


TO-247器件的大焊盘面积也非常适合直接连接至散热器,以获得数十瓦的耗散和较低的结温上升幅度。然而,这种封装的缺点为体积大、由机械装配导致的较高人工成本,以及引线电感和电阻。因此,特别在高功率密度设计中,通常倾向于采用表面贴装技术(SMT)封装;它可以自动放置元器件并采用回流焊接,与PCB连接处的电阻及电感也实现最小化,接近于零。然而,此种方式可能会导致较低的排热效率;其散热路径通常通过电气终端进入PCB。这可能会限制大功率应用的运行,而这也正是WBG器件的优势所在。



基于封装方式的局限进行价值评估

PCB走线和封装引线的电感及杂散电容,会由于WBG器件的快速电压和电流边缘速率而产生瞬态电压和电流;例如,SiC具备超过100 kV/µs和1000 A/µs(图2)的能力,这有助于实现低开关损耗,特别是在“硬开关”功率转换拓扑结构中。


然而,依据我们十分熟悉的公式:V = -L di/dt,仅仅10nH或大约10mm的引线长度就会由于这个电流边缘速率而产生10V的尖峰。如果该引线为源极连接,且与栅极驱动回路共用,则会向栅极电路导入10V的电压,从而影响栅极去偏和抗噪能力,造成更高的功率损耗。同样,仅仅10pF的杂散电容与100 kV/µs的边缘速率,会根据I = C dV/dt的公式产生1安培位移电流;其不确定的回流路径还可能包括敏感信号连接。电容还会与杂散电感一并引发,可能造成电路不稳定和产生不良的EMI特征。


图2:采用Qorvo SiC FET所产生的电路边缘速率示例


当然,这些影响可以得到缓解;例如,通过使用开尔文连接到栅极驱动回路的源头、采用负关态电压,和通过细致的布局实践将电容与电感降至最低[1]。然而,残余的杂散值对于TO-247等引线封装来说仍然是个问题,因此通常会通过定制栅极驱动或使用阻尼器来有意减缓边缘速率,但代价是更高的开关损耗。


无引线封装,如PDFN型(无引线功率双平面),在很大程度上解决了杂散电感的问题;一些WBG器件制造商提供了这种封装,并强调其较小的尺寸和较低的轮廓/厚度,以适合高密度设计。与TO-247引线器件相比,由于热扩散不足,PDFN封装的结点到外壳的热阻(Rθ(J-C))要差10倍以上,由此限制了其在高功率下的应用。此外,由于器件和PCB间没有引线连接,无法吸收热膨胀不匹配产生的应力,热机械性能也会受到影响。


作为一种替代方案,D2PAK封装有时可用于WBG器件,并提供针对高电流的7引线版本,还可选择用于源的开尔文连接。然而,这种表面贴装封装仍存在“引线”;由于电阻和电感的存在,其Rθ(J-C)与最佳TO-247值相比相差3倍。当然,它确实在漏极与其它连接之间带来固有的宽物理间距优势,使其能够满足高电压下所推荐的爬电与间隙距离。



TOLL封装是一个很好的解决方案

如图3所示,使用TOLL封装(无引线TO,MO-229)可以让Rθ(J-C)低至0.1℃/W,接近理想状态;Qorvo SiC FET系列的UJ4SC075005L8S器件便是一个实例。这一低值通过先进的cell功能单元设计、银烧结裸片连接和晶圆减薄实现。TOLL封装的尺寸为10mm x 11.7mm,相比D2PAK小30%。漏极和其它连接间存在一个很大的空间,但由于引线比D2PAK短得多,因此寄生电感也低得多。此外,TOLL的高度为2.3mm,为D2PAK的一半,这为热机械设计中的散热器提供了额外的鳍片高度,同时在服务器电源装置(PSU)等空间受限的设计中保持了相同的整体外形尺寸。与相同应用中的D2PAK解决方案相比,这有可能进一步降低器件结温。因此,TOLL封装解决方案的热阻可能优于D2PAK,特别是在焊盘提供更大的裸片尺寸时。


图3:现可用于SiC FET的TOLL封装


在TOLL封装中,所有热传导均通过源极引脚和漏极焊盘连接实现;可以将之重新焊接至安装于PCB的铜焊盘上,以传导热量。当然,热量仍必须有所去处;可以在PCB的背面直接安装一个紧凑的可焊接SMT散热器,通过PCB的通孔进行热连接。由于完全消除了通孔封装和机械固定散热器的手动安装工作,并且FET和散热器均可以采用自动化装配进行安装,因此这种热机械设计大大节省了装配成本。该器件还可以被焊接至绝缘金属基板(IMS)上,以获得最终性能,并与尺寸更大的机械连接散热器集成。


参考文献1讨论了这类布局;文献还指出,一个长1.6mm、直径0.5mm、未填充、壁厚0.025mm的导热孔带来约100℃/W的热阻。一个由200个此类通孔组成的矩阵,可以很容易地布置在TOLL封装的tab接点下,并产生一个从漏极焊盘到底面铜地的大约0.5℃/W热阻。在许多应用中,这将提供非常有效的热耦合和最小的温差。


顶面冷却的SMT封装也在市场上迅速出现,并提供了更佳的性能。然而,工程师们需要一些时间来克服顶面冷却封装的相关挑战;其中包括将不同高度的多个器件装配至同一冷却面,同时还要管理整体设计中的爬电与间隙要求。


图4:在同一电压等级下,TOLL封装的不同器件实现的导通电阻



实现10倍于硅基MOSFET的额定峰值电流

在TOLL封装的SiC FET中,异常低的封装热阻,以及由于超低5.4毫欧导通电阻和高达175℃的SiC FET结温而产生的低功率损耗,都使得其与其它开关相比具有较高的峰值电流承受能力并能承受更长的时间——即“I2t”性能。在功率转换电路中,负载可能会瞬间浪涌或短路,这就为器件在给定脉宽下所能承受的最大峰值电流提供了宝贵的额外安全裕度。当SiC FET用于固态断路器应用时,预计会出现高瞬态故障电流,因而必须在没有压力的情况下承受。图5显示了TOLL封装的SiC FET在达到安全工作极限前,承受给定峰值漏极电流的时间达到硅基MOSFET的10倍以上,由此提高了健壮度,让故障检测电路获得更长的反应时间,使其对电流尖峰的干扰性触发更具免疫力。


图5:峰值脉冲电流(I-t)电流能力比较——Qorvo TOLL封装的SiC FET和硅基MOSFET



应用

采用Qorvo TOLL封装的额定750V共源共栅结构SiC FET针对低静态和动态损耗进行了优化,展示了紧凑表面贴装开关的可行性。由此,这些系列器件的各种额定导通电阻在5-60毫欧之间,适合从几百瓦到数千瓦的相对高功率水平应用;包括AC/DC电源、电池充电器、电视和便携式充电站,以及替代能源、数据通信和一般工业应用中的功率转换。


在电路保护应用中,TOLL封装的SiC FET将在电动车充电器、电池关断电路,和建筑电气智能面板中找到用武之地——这些电气智能面板正变得更加智能,以提供动态负载管理。得益于Qorvo SiC FET的小尺寸/高性能指标,它们可以被考虑用于空间有限的终端应用。在此种情况下,与使用其它技术的高导通电阻器件相比,其需要更少的散热装置,并产生一个整体系统成本更低且功率密度更高的解决方案。当需要并联多个替代器件以实现与SiC FET相同的电气和热性能时,情况更是如此——后者将产生额外的器件成本,以及处理和安置的费用。



结论

一个宽带隙半导体功率开关的优劣取决于其封装。现在,共源共栅结构SiC FET有了TOLL版本,可以利用其低损耗来进一步提升系统功率密度。


利用Qorvo基于网络的FET-Jet计算器探索其技术优势,请访问:

https://info.unitedsic.com/fet-jet


参考资料

[1]《基于SiC FET应用的实用PCB布局考虑》,Qorvo



Qorvo半导体 射频领域技术分析与分享, 半导体行业信息交流
评论 (0)
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 76浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 100浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 69浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 75浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 54浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 105浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 65浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 176浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 83浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 108浏览
  • 一、温度计不准的原因温度计不准可能由多种原因导致,如温度计本身的质量问题、使用环境的变化、长时间未进行校准等。为了确保温度计的准确性,需要定期进行校准。二、校准前准备工作在进行温度计校准之前,需要做好以下准备工作:1. 选择合适的校准方法和设备,根据温度计的型号和使用需求来确定。2. 确保校准环境稳定,避免外部因素对校准结果产生影响。3. 熟悉温度计的使用说明书和校准流程,以便正确操作。三、温度计校准方法温度计校准方法一般分为以下几步:1. 将温度计放置在
    锦正茂科技 2025-03-31 10:27 54浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦