go的net/http有哪些值得关注的细节?

嵌入式ARM 2023-08-16 14:59
golang的net/http库是我们平时写代码中,非常常用的标准库。由于go语言拥有goroutine,goroutine的上下文切换成本比普通线程低很多,net/http库充分利用了这个优势,因此,它的内部实现跟其他语言会有一些区别。

其中最大的区别在于,其他语言中,一般是多个网络句柄共用一个或多个线程,以此来减少线程之间的切换成本。而golang则会为每个网络句柄创建两个goroutine,一个用于读数据,一个用于写数据。

读写协程

下图是net/http源码中创建这两个goroutine的地方。

源码中创建两个协程的地方

了解它的内部实现原理,可以帮助我们写出更高性能的代码,以及避免协程泄露造成的内存泄漏问题。

这篇文章是希望通过几个例子让大家对net/http的内部实现有更直观的理解。

连接与协程数量的关系

首先我们来看一个例子。

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
            Timeout:   3 * time.Second,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 5)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

上面的代码做的事情很简单,执行5次循环http请求,最终通过runtime.NumGoroutine()方法打印当前的goroutine数量。

代码里只有三个地方需要注意:

  1. 1. Transport设置了一个3s的空闲连接超时

  2. 2. for循环执行了5次http请求

  3. 3. 程序退出前执行了5s sleep

答案输出1。也就是说当程序退出的时候,当前的goroutine数量为1,毫无疑问它指的是正在运行main方法的goroutine,后面我们都叫它main goroutine

再来看个例子。

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
            Timeout:   3 * time.Second,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

在原来的基础上,我们程序退出前的睡眠时间,从5s改成1s,此时输出3。也就是说除了main方法所在的goroutine,还多了两个goroutine,我们大概也能猜到,这就是文章开头提到的读goroutine和写goroutine。也就是说程序在退出时,还有一个网络连接没有断开。

这是一个TCP长连接。

HTTP1.1底层依赖TCP

网络五层模型中,HTTP处于应用层,它的底层依赖了传输层的TCP协议。

当我们发起http请求时,如果每次都要建立新的TCP协议,那就需要每次都经历三次握手,这会影响性能,因此更好的方式就是在http请求结束后,不立马断开TCP连接,将它放到一个空闲连接池中,后续有新的http请求时就复用该连接。

像这种长时间存活,被多个http请求复用的TCP连接,就是所谓的长连接。反过来,如果每次HTTP请求结束就将TCP连接进行四次挥手断开,下次有需要执行HTTP调用时就再建立,这样的TCP连接就是所谓的短连接

HTTP1.1之后默认使用长连接。

连接池复用连接

那么,为什么这跟5s和1s有关系?

这是因为长连接在空闲连接池也不能一直存放着,如果一直没被使用放着也是浪费资源,因此会有个空闲回收时间,也就是上面代码中的IdleConnTimeout,我们设置的是3s,当代码在结束前sleep了5s后,长连接就已经被释放了,因此输出结果是只剩一个main goroutine。当sleep 1s时,长连接还在空闲连接池里,因此程序结束时,就还剩3个goroutine(main goroutine+网络读goroutine+网络写goroutine)。

我们可以改下代码下验证这个说法。我们知道,HTTP可以通过connectionheader头来控制这次的HTTP请求是用的长连接还是短连接。connection:keep-alive 表示http请求结束后,tcp连接保持存活,也就是长连接, connection:close则是短连接。

req.Header.Add("connection""close")

就像下面这样。

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        req.Header.Add("connection""close")
        client := &http.Client{
            Transport: tr,
            Timeout:   3 * time.Second,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

此时,会发现,程序重新输出1。完全符合我们预期。

resp.body是否读取对连接复用的影响

func main() {
   n := 5
   for i := 0; i < n; i++ {
      resp, _ := http.Get("https://www.baidu.com")
      _ = resp.Body.Close()
   }
   fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

注意这里没有执行 ioutil.ReadAll(resp.Body)。也就是说http请求响应的结果并没有被读取的情况下,net/http库会怎么处理。

上面的代码最终输出3,分别是main goroutine,read goroutine 以及write goroutine。也就是说长连接没有断开,那长连接是会在下一次http请求中被复用吗?先说答案,不会复用

我们可以看代码。resp.Body.Close() 会执行到 func (es * bodyEOFSignal) Close() error 中,并执行到es.earlyCloseFn()中。

earlyCloseFn的逻辑也非常简单,就是将一个false传入到waitForBodyRead的channel中。那写入通道后的数据会在另外一个地方被读取,我们来看下读取的地方。

bodyEOF为false, 也就不需要执行 tryPutIdleConn()方法。

tryPutIdleConn会将连接放到长连接池中备用)。

最终就是alive=bodyEOF ,也就是false,字面意思就是该连接不再存活。因此该长连接并不会复用,而是会释放。

那为什么output输出为3?这是因为长连接释放需要时间。

我们可以在结束前加一个休眠,比如再执行休眠1毫秒

func main() {
    n := 5
    for i := 0; i < n; i++ {
        resp, _ := http.Get("https://www.baidu.com")
        _ = resp.Body.Close()
    }
    time.Sleep(time.Millisecond * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

此时就会输出1。说明协程是退出中的,只是没来得及完全退出,休眠1ms后彻底退出了。

如果我们,将在代码中重新加入 ioutil.ReadAll(resp.Body),就像下面这样。

func main() {
    n := 5
    for i := 0; i < n; i++ {
        resp, _ := http.Get("https://www.baidu.com")
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

此时,output还是输出3,但这个3跟上面的3不太一样,休眠5s后还是输出3。这是因为长连接被推入到连接池了,连接会重新复用。

下面是源码的解释。

body.close()不执行会怎样?

网上都说不执行body.close()会协程泄漏(导致内存泄露),真的会出现协程泄漏吗,如果泄漏,会泄漏多少?

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        //_ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

我们可以运行这段代码,代码中将resp.body.close()注释掉,结果输出3。debug源码,会发现连接其实复用了。代码执行到tryPutIdleConn函数中,会将连接归还到空闲连接池中。

休眠5s,结果输出1,这说明达到idleConnTimeout,空闲连接断开。看起来一切正常。

resp.Body.Close()那一行代码重新加回来,也就是下面这样,会发现代码结果依然输出3我们是否删除这行代码,对结果没有任何影响。

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

既然执不执行body.close()都没啥区别,那body.close()的作用是什么呢?

它是为了标记当前连接请求中,response.body是否使用完毕,如果不执行body.close(),则resp.Body中的数据是可以不断重复读且不报错的(但不一定能读到数据),执行了body.close(),再次去读取resp.Body则会报错,如果resp.body数据读一半,处理代码逻辑就报错了,此时你不希望其他地方继续去读,那就需要使用body.close()去关闭它。这更像是一种规范约束,它可以更好的保证数据正确。

也就是说不执行body.close(),并不一定会内存泄露。那么什么情况下会协程泄露呢?

直接说答案,既不执行 ioutil.ReadAll(resp.Body) 也不执行resp.Body.Close(),并且不设置http.Clienttimeout的时候,就会导致协程泄露

比如下面这样。

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
        }
        resp, _ := client.Do(req)
        _ = resp
    }
    time.Sleep(time.Second * 5)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

最终结果会输出11,也就是1个main goroutine + (1个read goroutine + 1个read goroutine)* 5次http请求。

前面提到,不执行ioutil.ReadAll(resp.Body),网络连接无法归还到连接池不执行resp.Body.Close(),网络连接就无法为标记为关闭,也就无法正常断开。因此能导致协程泄露,非常好理解。

但http.Client内timeout有什么关系?这是因为timeout是指,从发起请求到从resp.body中读完响应数据的总时间,如果超过了,网络库会自动断开网络连接,并释放read+write goroutine。因此如果设置了timeout,则不会出现协程泄露的问题。

另外值得一提的是,我看到有不少代码都是直接用下面的方式去做网络请求的。

resp, _ := http.Get("https://www.baidu.com")

这种方式用的是DefaultClient,是没有设置超时的,生产环境中使用不当,很容易出现问题。

func Get(url string) (resp *Response, err error) {
    return DefaultClient.Get(url)
}

var DefaultClient = &Client{}


连接池的结构

我们了解到连接池可以复用网络连接,接下来我们通过一个例子来看看网络连接池的结构。


func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""http://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
            Timeout:   3 * time.Second,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

注意,这里请求的不是https,而是http。最终结果输出5,为什么?

这是因为,http://www.baidu.com会返回307,重定向到https://www.baidu.com

http重定向为https

在网络中,我们可以通过一个五元组来唯一确定一个TCP连接。

五元组

它们分别是源ip,源端口,协议,目的ip,目的端口。只有当多次请求的五元组一样的情况下,才有可能复用连接。

放在我们这个场景下,源ip、源端口、协议都是确定的,也就是两次http请求的目的ip或目的端口有区别的时候,就需要使用不同的TCP长连接。

而http用的是80端口,https用的是443端口。于是连接池就为不同的网络目的地建立不同的长连接。

因此最终结果5个goroutine,其实2个goroutine来自http,2个goroutine来自https,1个main goroutine。

我们来看下源码的具体实现。net/http底层通过一个叫idleConnmap去存空闲连接,也就是空闲连接池。

idleConn这个map的key是协议和地址,其实本质上就是ip和端口。map的value是长连接的数组([]*persistConn),说明net/http支持为同一个地址建立多个TCP连接,这样可以提升传输的吞吐。

连接池的结构和逻辑

Transport是什么?

Transport本质上是一个用来控制http调用行为的一个组件,里面包含超时控制,连接池等,其中最重要的是连接池相关的配置。

我们通过下面的例子感受下。

func main() {
    n := 5
    for i := 0; i < n; i++ {
        httpClient := &http.Client{}
        resp, _ := httpClient.Get("https://www.baidu.com")
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}
func main() {
    n := 5
    for i := 0; i < n; i++ {
        httpClient := &http.Client{
            Transport:  &http.Transport{},
        }
        resp, _ := httpClient.Get("https://www.baidu.com")
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

上面的代码第一个例子的代码会输出3。分别是main goroutine + read goroutine + write goroutine,也就是有一个被不断复用的TCP连接。

在第二例子中,当我们在每次client中都创建一个新的http.Transport,此时就会输出11

说明TCP连接没有复用,每次请求都会产生新的连接。这是因为每个http.Transport内都会维护一个自己的空闲连接池,如果每个client都创建一个新的http.Transport,就会导致底层的TCP连接无法复用。如果网络请求过大,上面这种情况会导致协程数量变得非常多,导致服务不稳定。

因此,最佳实践是所有client都共用一个transport

func main() {
    tr := &http.Transport{
        MaxIdleConns:    100,
        IdleConnTimeout: 3 * time.Second,
    }

    n := 5
    for i := 0; i < n; i++ {
        req, _ := http.NewRequest("POST""https://www.baidu.com"nil)
        req.Header.Add("content-type""application/json")
        client := &http.Client{
            Transport: tr,
            Timeout:   3 * time.Second,
        }
        resp, _ := client.Do(req)
        _, _ = ioutil.ReadAll(resp.Body)
        _ = resp.Body.Close()
    }
    time.Sleep(time.Second * 1)
    fmt.Printf("goroutine num is %d\n", runtime.NumGoroutine())
}

如果创建客户端的时候不指定http.Client,会默认所有http.Client都共用同一个DefaultTransport。这一点可以从源码里看出。

默认使用DefaultTransport
DefaultTransport

因此当第二段代码中,每次都重新创建一个Transport的时候,每个Transport内都会各自维护一个空闲连接池。因此每次建立长连接后都会多两个协程(读+写),对应1个main goroutine+(read goroutine + write goroutine)* 5 =11。

别设置Transport.Dail里的SetDeadline

http.Transport.Dial的配置里有个SetDeadline,它表示连接建立后发送接收数据的超时时间。听起来跟client.Timeout很像。

那么他们有什么区别呢?我们通过一个例子去看下。

package main

import (
    "bytes"
    "encoding/json"
    "fmt"
    "io/ioutil"
    "net"
    "net/http"
    "time"
)

var tr *http.Transport

func init() {
    tr = &http.Transport{
        MaxIdleConns: 100,
        Dial: func(netw, addr string) (net.Conn, error) {
            conn, err := net.DialTimeout(netw, addr, time.Second*2//设置建立连接超时
            if err != nil {
                return nil, err
            }
            err = conn.SetDeadline(time.Now().Add(time.Second * 3)) //设置发送接受数据超时
            if err != nil {
                return nil, err
            }
            return conn, nil
        },
    }
}

func main() {
    for {
        _, err := Get("http://www.baidu.com/")
        if err != nil {
            fmt.Println(err)
            break
        }
    }
}


func Get(url string) ([]byteerror) {
    m := make(map[string]interface{})
    data, err := json.Marshal(m)
    if err != nil {
        return nil, err
    }
    body := bytes.NewReader(data)
    req, _ := http.NewRequest("Get", url, body)
    req.Header.Add("content-type""application/json")

    client := &http.Client{
        Transport: tr,
    }
    res, err := client.Do(req)
    if res != nil {
        defer res.Body.Close()
    }
    if err != nil {
        return nil, err
    }
    resBody, err := ioutil.ReadAll(res.Body)
    if err != nil {
        return nil, err
    }
    return resBody, nil
}

上面这段代码,我们设置了SetDeadline为3s,当你执行一段时间,会发现请求baidu会超时,但其实baidu的接口很快,不可能超过3s。

在生产环境中,假如是你的服务调用下游服务,你看到的现象就是,你的服务显示3s超时了,但下游服务可能只花了200ms就已经响应你的请求了,并且这是随机发生的问题。遇到这种情况,我们一般会认为是“网络波动”。

但如果我们去对网络抓包,就很容易发现问题的原因 。

抓包结果

可以看到,在tcp三次握手之后,就会开始多次网络请求。直到3s的时候,就会触发RST包,断开连接。也就是说,我们设置的SetDeadline,并不是指单次http请求的超时是3s,而是指整个tcp连接的存活时间是3s,计算长连接被连接池回收,这个时间也不会重置。

SetDeadline的解释

我实在想不到什么样的场景会需要这个功能,因此我的建议是,不要使用它。

下面是修改后的代码。这个问题其实在我另外一篇文章有过详细的解释,如果你对源码解析感兴趣的话,可以去看看。

package main

import (
    "bytes"
    "encoding/json"
    "fmt"
    "io/ioutil"
    "net/http"
    "time"
)

var tr *http.Transport

func init() {
    tr = &http.Transport{
        MaxIdleConns: 100,
        // 下面的代码被干掉了
        //Dial: func(netw, addr string) (net.Conn, error) {
        // conn, err := net.DialTimeout(netw, addr, time.Second*2) //设置建立连接超时
        // if err != nil {
        //  return nil, err
        // }
        // err = conn.SetDeadline(time.Now().Add(time.Second * 3)) //设置发送接受数据超时
        // if err != nil {
        //  return nil, err
        // }
        // return conn, nil
        //},
    }
}


func Get(url string) ([]byteerror) {
    m := make(map[string]interface{})
    data, err := json.Marshal(m)
    if err != nil {
        return nil, err
    }
    body := bytes.NewReader(data)
    req, _ := http.NewRequest("Get", url, body)
    req.Header.Add("content-type""application/json")

    client := &http.Client{
        Transport: tr,
        Timeout: 3*time.Second,  // 超时加在这里,是每次调用的超时
    }
    res, err := client.Do(req) 
    if res != nil {
        defer res.Body.Close()
    }
    if err != nil {
        return nil, err
    }
    resBody, err := ioutil.ReadAll(res.Body)
    if err != nil {
        return nil, err
    }
    return resBody, nil
}

func main() {
    for {
        _, err := Get("http://www.baidu.com/")
        if err != nil {
            fmt.Println(err)
            break
        }
    }
}

总结

golang的net/http部分有不少细节点,直接上源码分析怕劝退不少人,所以希望以几个例子作为引子展开话题然后深入了解它的内部实现。总体内容比较碎片化,但这个库的重点知识点基本都在这里面了。希望对大家后续排查问题有帮助。

END

来源:小白debug


版权归原作者所有,如有侵权,请联系删除。


推荐阅读

C语言,环形队列

嵌入式开发,要不要接私活?

ARM处理器Bootloader底层流程


→点关注,不迷路←

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 144浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 96浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 167浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 98浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 66浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦