闲话放大电路中的“自举”(bootstrap)

原创 电子工程世界 2023-08-14 07:30

我零散地玩了十几年电路,又以音频放大为主,看到过也实验过一些有意思的电路结构,很久以来就有想法要和大家分享。这次要分析的是放大电路中的自举电路。作为一个没有上过一门电子学课,靠兴趣自学过来的DIYer,我若下面讲的内容有错,请各位老师斧正!
  

“自举”(翻译自bootstrap)这个词汇在多个领域可能见到(字面意思是提着靴子上的带子把自己提起来,这当然不可能),在电路里面,这是一个古老的技术。而且自举也不仅是在放大电路中,例如在电源里面也用到自举,但本人了解不多就不在此讨论了。

音频功率放大器中的自举电容


这个自举电路是我最早见到的自举,在古老的分立半导体收音机功率放大部分经常见到(相比用输入输出变压器的那种,其实也还不那么老了,不过收音机早都用集成电路了),就像下图中红框标出的部分这样。


 

又如,在经典的 JLH 1969 功放电路里面(下图中 R3, R8, C5 构成自举):


 


不过上面两个电路都包含了负反馈,倘若再弄得简单一些(不实用)来分析,就成下面我画的这个电路了:


 
这个电路是一级共发射极放大(Q2),加上一级互补射极输出器(Q1, Q5)。如果先忽略自举电容C1,那么 R4串联R5 一起构成了 Q2 的集电极负载电阻(3.7k)。当然计算Q2电压增益的时候还要把 Q1/Q5 的输入阻抗考虑进去。Q2这一级电压放大的增益和集电极负载阻抗大致是成正比的(这里暂不考虑Miller效应、Early效应),如果后面射极跟随器的输入阻抗足够高的话,也就成了集电极负载电阻越大,增益越大了。可是把直流工作点考虑进来,要想集电极负载电阻越大而集电极电流不变的话,就要提高电源电压……所以集电极负载电阻选择受限。


好了,现在把集电极负载电阻拆成两段,加进来一个自举电容,形成上面的样子,直流工作点不变。现在Q2集电极负载电阻是多少?R4么?似乎不对。看时域仿真分析吧:


 


仿真所示输出节点(R3, R1公共端)的电压波形: 100uF 自举电容加入以后(红色线),输出信号幅度比不加电容时(蓝色线)大了一个数量级。

为什么会有这样的效果?上面电路中负载电阻 R4 一端接在Q1的集电极(按交流等效,忽略三个二极管上压降的变化),也是射极输出器的输入,另一端经过自举电容接在射极输出器的输出。因为射极输出器是同相放大,电压增益略小于但接近于1,这是一种正反馈的接法。将上面电路自举起作用的部分摘出来,画成下图:

   


第一级晶体管的输出看成是一个电流源,射极输出器相当于一个增益G约等于1的放大器,它有很高的输入阻抗 Zin 和较低的输出阻抗 Zout. 这里把自举电容的阻抗也合并到 Zout 中。虽然在上面完整电路里面自举电容还接了一个电阻到电源(交流等效地),利用戴维南定理将它等效到放大器中(导致增益下降)。第一级晶体管的输出阻抗和 Zin 是并联关系,可以合并看待。
  

如上的简化处理之后,电路的增益就不难计算了。根据电流平衡,可以解得放大器输入端的电压是
 I*(R+Zout)*Zin/[Zin*(1-G)+R+Zout] = I*[(R+Zout)/(1-G)*Zin]/[Zin + (R+Zout)/(1-G)]

也就是,从第一级晶体管输出端看到的负载阻抗是 (R+Zout)/(1-G) 和 Zin 并联的值。换句话说,自举这一技巧使集电极负载电阻约被“增大”了 1/(1-G) 倍

不妨再用 spice 仿真验证一下,如下:


 
 


当 G 分别为 0.5, 0.9, 0.99, 0.999 时,电阻被“放大”了2, 10, 100, 1000 倍,导致增益提升 6dB, 20dB, 39dB, 54dB (受到Zin限制,增益不能无限提高)。

最后还有一个小问题:实际的功率放大电路中有负反馈控制了总的增益,那么自举电路是否还起到明显的作用?实际上,负反馈引起闭环增益的下降,是使得前面共发射极电路的输入幅度降低,而单独看这一级的增益仍然是因为自举电路而提升的。开环增益提高使闭环后的频率响应和失真率都改善更多,因此在以前功率放大器中常见这样的电路。

利用自举提升输入阻抗


再把上面电路中的共发射极放大部分忽略,单独看射极输出器呢?哦,电路缺了点啥——需要给射极输出器加上偏置啊。偏置电阻也会成为输入信号的负载,使整个跟随器的输入阻抗降低。不过,将自举电路的接法变形一下,成下面这样之后……
 
用刚才推导的“电阻倍增”原理,这个电路里面输入偏置电阻从原来的 R3+R1//R2 变为了 (1-G)*R3,对输入阻抗的影响就消除了。不过要进一步提高输入阻抗,Q1的负载需要减轻。下图是 Douglas Self 书里面里讨论高输入阻抗电路时的一个例子


这个图上有两级跟随器,自举电容是从第二级后取出信号的,可以认为这样总增益更接近于1,而且第一个管子的输入阻抗也提高了。

交叉射级输出器中的自举电容


这个四管的两级射极输出器电路是我从黑田彻(日)的书上学来的,在我制作的一个耳机放大器模块中使用了。

 


和第一个经典的自举电路有几分相似,作用却不尽相同。首先,按照前面的结论,R4+R6,以及 R5+R7 分别被“倍增”了,等效阻抗提高。注意,Q1 是射极输出器,R4+R6现在是 Q1 的发射极电阻,当它被等效放得很大,就相当于 Q1 发射极接了一个恒流源。同时,自举电容也改变了 Q1, Q4 的集电极交流电位,使 VCE 几乎恒定——这样的好处是大大消除了晶体管集电结电容的影响,在这个电路中减小了输入电容,提升高频性能。

小结一下,到目前我们看到了自举电路的几个用法:
(a) 提高共发射极放大电路的增益(也可以用在共基极放大电路)
(b) 提高射极输出器(跟随器,共集电极电路)的输入阻抗
(c) 稳定射极输出器的发射极电流
(d) 使射极输出器的集电极电压跟随发射极

以上电路共同特点是:
(1) 从射极输出器(电压增益约为1)的输出用自举电容引出信号,馈送到它的前级
(2) 从低阻节点向高阻节点的反馈,自举电容只有一端是强驱动(电压输出)信号

省去自举电容


自举电容的作用是隔直流,即只对交流信号有效,采取自举后不改变直流工作点。倘若工作点选择合适,也可以不用自举电容实现自举,如下面这个电路:




注意 R6 的接法,它是否被自举“倍增”了?

用运放替换射极输出器


自举电路中增益约等于1的放大器,除了用射极输出器实现,也可以用源极输出器、运放缓冲电路等实现。下面电路中电位器用来调整反馈比例,也就是等效于改变增益,从而使电阻“倍增”的倍数可调,实现可调的滤波器。


IC7a, 连同 R42, VR5a 构成自举中的放大器,C33是自举电容,使 R41 等效“加倍”。注意,这个“倍数”与VR5a并不是成线形关系的,猜想是特意为之,不然不用自举电路,直接把R41换成电位器了。
  

再看一个复杂一点的,不那么明显的电路 (pdf里面的图就是这么不清楚了,没办法):

 


除了一个与电容串联的电阻用在频率补偿,其余几个电阻是为了设置直流工作点的,与增益无关。从JFET的栅极到运放输出,电压增益为1,注意,由于运放强大的开环增益,对交流信号来说JFET的 G, D, S极都是等电位的。由于运放自举的作用,是管子的电流几乎不变,D-S端电压也几乎不变。在这个电路里,自举用来实现很高的输入阻抗。

以上的自举电路中,关键部分——放大器(提供电流的缓冲器)的输出也是信号的输出。好象是添加少量阻容元件就增加了自举功能。下面将要介绍的是,用缓冲器仅仅为了自举,而不输出信号的电路。

场效应管的自举 Cascode


这是我个人很喜欢的电路,下图是我做过的一个放大器的差分输入级,在两个JFET上使用了自举。

 


这个电路中 Q5 Q6 两个管子是差分放大,静态电流由源极的公共电流源决定。Q1 Q2组成镜像电流源负载,是很常见的电路接法。Q3 和 Q4 是用来自举的,它们的基极跟随 Q5 Q6 的源极电压变化,因此发射极也跟随 Q5 Q6 的源极电压变化。这个自举电路的目的是让 Q1 Q2 的 VDS 保持恒定,从而消除寄生电容 Cgd 的影响(因为JFET这个电容比较大,是缺点)。R1, D1, D2, Q7 在这里的作用是利用二极管的稳压特性提供一个基本不变的偏置电压。
  

在此处,如果将 Q3, Q4 看作缓冲器,那么它们输出的信号并没有被引出来使用,只是用来确定 Q5 Q6 的漏极电压了。然而 Q3 Q4 的确是输出了信号的,是从集电极输出的——应用时增益远大于1了。拆开来看,Q3-Q5, Q4-Q6 都是 Cascode 电路,只不过共基极放大部分的基极电压随着差分对管而变动了——所以是自举式的 Cascode.

上面电路中Cascode的共基极三极管偏置方式稍微复杂了点,如果换成适当的JFET,可以使这个Cascode很简洁,如下面这样。


 
  

这种接法对 JFET 的选择有所限制,不是随便抓两个管子就行。因为需要保证在设定的电流下,输入信号的那个管子(上图 Q1 Q2)VDS 等于它上面那个自举用的管子的 VGS.

运放电源自举


最后来看一种特殊的自举用法:改变运算放大器的电源电压,让两个电源端跟随输入端而动。这样在那个被自举的运放看来,好象+端输入信号恒定一样——也就是消除了输入共模电压。这个技巧被用来减少运放输入级的失真。



如上图,电源自举付出的代价是不小的,除了增加一个运放作为跟随器外,还因为需要提供大电流使用了两个晶体管扩流。

总结归纳一下上面例子电路中“自举”的要点:有一个提供低阻抗输出的缓冲器(增益约等于1的放大器),它将参考节点的电压缓冲后施加到电路中另外的某个节点,使其交流电压随着参考接点作相同的变化。结果是在某些元件或者部分电路的端子上产生恒压之效,提升电路的某方面性能。


推荐阅读

传紫光集团拟出售旗下法国芯片公司
碳化硅龙头忙扩产,市场将迎来高峰?
日本管制新规生效,光刻机遭抢购
美商务部:由于中国补贴,半导体产能过剩

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角“三个小点”,点击“设为星标”。

欢迎扫码关注


电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论 (0)
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 63浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 157浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 320浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 209浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 584浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 68浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 345浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 74浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 140浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 53浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 66浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 480浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 313浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦