RA6T2的16位模数转换器操作[11]配置RA6T2ADC模块(8)

原创 瑞萨MCU小百科 2023-08-11 12:03


2 配置RA6T2 ADC模块


2.2 以16位深度操作ADC

2.2.6 数字滤波器功能

数字滤波器功能是获得高精度和高分辨率16位深度A/D转换结果不可或缺的一部分。因此,在过采样模式和混合模式下需要使用该功能。禁止在SAR模式下使用数字滤波器。


本节将介绍数字滤波器功能的特性和配置,并解释滤波器的操作方法。


2.2.6.1 配置和特性

每个ADC单元配备4个数字滤波器。数字滤波器是具有22个抽头的FIR型滤波器。在操作ADC之前,必须先配置数字滤波器。有两款预设滤波器可供选择:sinc滤波器(在FSP配置中称为sync3滤波器)或最小相位滤波器。


sinc3滤波器的频率响应如下图所示:

图9. Sinc3滤波器的归一化频率响应


最小相位滤波器的频率响应如下图所示:

图10. 最小相位滤波器的归一化频率响应


有关sinc3滤波器和最小相位滤波器特性的更多信息,请参见《RA6T2硬件用户手册》的“电气特性”一章。


数字滤波器通过ADDOPCRAn.DFSEL[2:0](n = 0至36)和ADDFSRm(m = 0、1)寄存器进行设置。下面的框图显示了数字滤波器配置:


图11. 数字滤波器框图


2.2.6.2 操作数字滤波器

如果使能数字滤波器功能,则A/D转换数据会按顺序输入数字滤波器。如果数字滤波器的所有抽头都填满数据,则会输出计算结果,并将其发送到下一个数据处理步骤。


过采样模式和混合模式的数字滤波器功能操作略有不同。


(1) 数字滤波器操作 – 过采样模式

在过采样模式下,A/D转换器连续对一个模拟通道进行过采样。每次执行过采样时,A/D转换数据会按顺序输入数字滤波器。滤波器的所有抽头都填满转换数据后,即会从滤波器输出计算结果,并将其发送到下一个数据处理步骤。


将A/D转换数据输出到下一个数据处理步骤后,会丢弃数字滤波器中的抽头数据。但是,如果使用A/D转换值相加/平均值计算功能,则在收集到计算A/D转换值的相加值或平均值所需的数据之前,将一直保留数字滤波器中的抽头数据。计算出A/D转换值相加值/平均值后,将丢弃数字滤波器中的抽头数据。


(2) 数字滤波器操作 – 混合模式

混合模式可以同时使用多个数字滤波器电路并行处理最多四个模拟通道的过采样数据(A/D转换数据)。每次执行过采样时,A/D转换数据会按顺序输入数字滤波器。滤波器的所有抽头都填满转换数据后,即会从滤波器输出计算结果,并将其发送到下一个数据处理步骤。


混合模式 – 单次扫描模式组合下,将在扫描操作结束时丢弃数字滤波器中的抽头。

混合模式 – 连续扫描模式组合下,只要继续执行连续扫描操作,数字滤波器中的抽头数据就会不断更新。因此,在数字滤波器中的所有抽头都填满数据后,每次执行过采样时都会输出一个新的计算结果。如果扫描操作由于A/D转换的强制停止而中止,将丢弃滤波器中的抽头数据。

混合模式 – 后台连续扫描模式组合与混合模式 – 连续扫描模式组合的数字滤波器操作相同。在后台连续扫描操作期间,数字滤波器和其他数据处理仍在后台进行。如果扫描操作由于A/D转换的强制停止而中止,将丢弃滤波器中的抽头数据。


2.3 ADC时序注意事项

本节将重点介绍有关操作ADC单元的几个时序注意事项。 


2.3.1 采样率计算

对外部输入的模拟信号进行A/D转换时,所需的采样时间取决于A/D转换器中的采样电容的充电时间。电路的简化模型如图12所示。采样时间可以通过以下等式粗略估算:


tSPL = (REXT + RAD) × (CEXT + kCAD) × ln [kCAD / (CEXT + kCAD) × (2N / M)]


注:

tSPL:估计采样时间

CEXT:外部电容(引脚电容 + PCB寄生电容)

CAD:内部采样电容

REXT:外部输入信号源阻抗

RAD:内部电阻

k:校正系数(取决于操作模式)

N:目标转换分辨率(16、14、12或10)

M:采样误差(基于N位A/D转换器中的1个LSB)(1/4、1/2、1、2或4个LSB等)


各参数供参考的典型值如下:

• 模拟输入引脚的引脚电容:5 pF

• 内部采样电容 (CAD):5 pF

• 高速通道的内部电阻RAD:0.7 kΩ

• 高精度通道的内部电阻RAD:1.2 kΩ

• 正常精度通道的内部电阻RAD:3.0 kΩ

• SAR模式下的校正系数k:1.2

• 过采样模式下的校正系数k:1.0

• 混合模式下的校正系数k:1.2


图12. 简化电路模型和电容充电的采样时间曲线


在给定的等式中,时间是根据模拟输入电压 (VIN) 与采样电容电压 (VAD) 之差达到小于或等于采样误差(基于N位A/D转换器)所用的时间来估算的。


该等式只是经过简化的一般用例。它只能用于粗略估算采样时间,不能保证获得准确的采样时间。特别是对于正常精度通道,如果 (2N/M > 16384),采样时间估算的准确性会下降。


2.3.1.1 16位转换方法注意事项

对于16位转换方法,其模拟输入信号频率的最大范围计算取决于最大采样频率以及所选数字滤波器的归一化截止频率。


采样时间的倒数即是采样频率。采样频率乘以所选相应数字滤波器的归一化截止频率即可得出输入频率的上限。归一化截止频率在下表中突出显示:


表9. 数字滤波器的归一化截止频率


计算示例:

如果转换时间为1460ns,则需要至少1个20ns的额外周期以对采样保持电路进行重新采样。因此,总周期为1480ns = 675.7KHz

Sinc滤波器:675.7KHz × 0.033 = 23.0KHz 最大输入频率

最小相位滤波器:675.7KHz × 0.116 = 78.4KHz 最大输入频率


2.3.2 时钟速率

A/D转换时钟 (ADCLK) 是ADC的工作时钟。A/D转换器(ADC0和ADC1)基于ADCLK(作为基本时钟)运行和控制。下图为ADC的时钟结构:


图13. ADC外设的简化时钟结构


ADCLK由时钟源按照ADCLKCR寄存器中所选的分频比进行分频而产生。设置ADCLK的频率时应确保PCLKA ≥ ADCLK。此外,还应在《硬件用户手册》的“电气特性”一章规定的工作范围(最小25MHz到最大60MHz)内设置ADCLK的频率,以确保正常工作。


更多内容,您可复制下方网址到浏览器中打开进入瑞萨中文论坛查看:

https://community-ja.renesas.com/zh/forums-groups/mcu-mpu/


下一章:应用项目简介


推荐阅读

RA6T2的16位模数转换器操作 [8] 配置RA6T2 ADC模块 (5)

RA6T2的16位模数转换器操作 [9] 配置RA6T2 ADC模块 (6)

RA6T2的16位模数转换器操作 [10] 配置RA6T2 ADC模块 (7)

更多精彩内容,请点击

评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 93浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 95浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 138浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 96浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 188浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 172浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 112浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 38浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 135浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 62浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦