硫汞族量子点红外光电探测技术

MEMS 2023-08-10 00:01

碲镉汞(HgCdTe)、锑化铟(InSb)和铟镓砷(InGaSb)等块体半导体红外探测器的优异性能使得其在制导、遥感、侦察等军事及航天领域均发挥了重要作用。然而,受限于复杂的分子束外延生长及倒装键合工艺,现有块体半导体红外探测器成本高昂、工艺复杂、极大制约了成像阵列规模和分辨率的进一步提升。胶体量子点作为一种新兴的半导体纳米晶体材料,因“量子限域”效应,能够实现宽谱段范围内的精准带隙调控。同时,胶体量子点可通过液相化学合成方法低成本大批量制备。此外,胶体量子点的液相加工工艺使得其可以与硅基读出电路进行直接片上电学耦合,突破了倒装键合工艺限制。因此,胶体量子点在红外探测及成像领域展现了巨大的应用前景。其中硫汞族量子点具有探测波段范围宽、物性调控易及便于硅基集成等优势,先后实现了中波红外背景限探测、双色探测及焦平面阵列成像等,在红外光电技术展示了巨大的潜力。

据麦姆斯咨询报道,近期,北京理工大学和精密光电测试仪器及技术北京市重点实验室的科研团队在《光学学报》期刊上发表了以“硫汞族量子点红外光电探测技术”为主题的文章。该文章第一作者和通讯作者为郝群教授,主要从事新型光电成像技术、仿生光电感测技术、抗振干涉测量技术及仪器等方面的研究工作。

本文概括性地介绍了硫汞族胶体量子点红外探测器的研究现状与进展、硫汞族胶体量子点焦平面阵列的设计方法,并对硫汞族胶体量子点在各类探测中的应用进行阐述,简要讨论了硫汞族胶体量子点红外上转换探测器的发展进程。最后对硫汞族胶体量子点的未来发展方向进行了讨论与展望。

图1 胶体量子点技术

硫汞族胶体量子点单点型红外探测器

胶体量子点光吸收过程主要分为带间跃迁吸收及带内跃迁吸收两种。带间跃迁发生于量子点导带与价带之间。当入射光能量大于或等于带间带隙时,入射光子能量可激发导带内电子跃迁,形成光吸收进而产生光生载流子。带内跃迁发生于导带或价带内,只有当入射光子能量等于带间带隙时,光子能量才可被吸收,进而形成载流子。带内跃迁的实现依赖于对量子点掺杂浓度及费米能级的精确调控。带内跃迁型量子点优势之一为可以突破小带隙材料这一限制,开发基于宽带隙材料如金属氧化物(氧化镉、氧化钛、氧化铜、氧化锌等)的量子点体系。

硫汞族胶体量子点带间跃迁红外探测器

硫汞族胶体量子点红外光电探测器主要包括三类:光导型、光晶体管和光伏型。光导型探测器结构简单,可以通过在叉指电极上沉积胶体量子点来制备。尽管制备方便,光导型器件存在暗电流及噪声大等问题。与光导型器件相比,光伏型器件在理论上可以避免1/f噪声和暗电流,可以大大提高器件的灵敏度。

图2 美国芝加哥大学在硫汞族胶体量子点带间跃迁红外探测器方面的研究

硫汞族胶体量子点早期研究起源于美国芝加哥大学Guyot-Sionnest 教授团队。2011年芝加哥大学团队报道了首个碲化汞胶体量子点中波红外光电探测器,基于带间跃迁过程,器件响应波段范围可覆盖1.7 μm到5 μm,比探测率达到10⁹ Jones。2015年,该团队基于碲化银掺杂方法,开发了第一个达到背景限红外探测性能的量子点探测器,比探测率达到4.2×10¹⁰ Jones,响应时间在μs级别,器件结构如图2a所示。2018年,该团队通过氯化汞激活的碲化银掺杂方法进一步提高了光电探测器的灵敏度和响应速度,如图2b-c所示。2019年,在前期单波段探测器研究及掺杂工艺基础之上,通过使用垂直堆叠的胶体量子点光电二极管结构,该团队实现了双波段短波红外及中波红外探测器的制备,在两个不同的波段提供了可偏置切换的光谱响应,如图2d所示。双波段器件由一个短波和一个中波红外光电二极管组成,以n-p-n背靠背结构排列,硒化铋和碲化银分别作为n层和p层。通过控制偏置极性和幅度,它可以在调制频率高达100 kHz的短波和中波红外之间快速切换(图2e),比探测率在低温下高于10¹⁰ Jones。

为解决量子点红外探测器批量化制备需求,突破传统外延红外材料产量及成膜均匀性瓶颈,2020年,北京理工大学光电学院郝群、唐鑫及陈梦璐团队首先提出并实现了一种高效的掩膜式喷涂光刻技术。胶体量子点在成膜过程中,量子点位置、间距可沿应力最小方向重排,解决传统外延材料晶格失配及应力失调难题,可以在4英寸刚性、柔性和弯曲的基底之上沉积厚度均匀、表面光滑的胶体量子点薄膜(图3a-b)。所制备的六通道的柔性多光谱碲化汞胶体量子点探测器,可在光导型和光伏型模式下运行,且覆盖短波和中波红外响应波段,其峰值比探测率高于10¹¹ Jones,并且其噪声等效温差低至26.7 mK。通过所提出的喷涂光刻方法制造了具有可以对不同的光谱范围做出响应,实现宽光谱多波段探测(图3c)。

以此为基础,北京理工大学团队先后在可见光-短波红外双波段探测、短波红外-中波红外双模式探测及光学谐振增强的双色红外探测方面实现突破。从单一波段到多波段探测的提升依赖于能带结构精准设计及实现。首先,该团队通过探索背靠背双光电二极管结构,提出了一种基于硫族胶体量子点(碲化汞和碲化镉胶体量子点)的双波段可见光和短波红外探测器。通过在碲化镉和碲化汞层之间引入了n型氧化锌层作为电子传输层和空穴阻挡层,防止来自不同传感层的空穴注入,使探测器能够通过改变偏置电压的极性和大小在可见光和短波红外模式之间切换,且比探测率高于10¹¹ Jones,如图3d-f所示。

图3 北京理工大学在硫汞族胶体量子点带间跃迁红外探测器方面的研究

2022年,北京理工大学团队进一步提出了一种胶体量子点双模式能带设计及叠层探测器结构,能够探测、分离和融合来自不同波长范围的光子(图4a)。利用三个垂直堆叠的胶体量子点同质结,通过控制偏置极性和大小,在同一个探测器上可以实现单波段短波红外成像和融合波段成像(图4b-c)。双模式探测器的探测率分别达到融合波段模式8×10¹⁰ Jones和在单波段模式3.1×10¹¹ Jones。双波段探测器的出现为光学结构设计提出了更高要求,传统光学增强方法如等离子共振、光子晶体、超材料等大多针对单一波段,为实现双/多波段探测器的性能提升,该团队创新了一种胶体量子点双波段红外光电探测器法布里-珀罗谐振腔的设计及集成方式,可以同时针对短波和中波红外提供光吸收增强(图4d)。同时,由于谐振腔的存在,探测器的性能可以通过提高光学收集效率和光谱选择性而得到提升。该双波段探测器在短波和中波红外中的响应率分别为1.1 A W⁻¹和1.6 A W⁻¹,增强率约200%-300%(图4e-f)。在高温运行方面,该团队利用高迁移率胶体量子点研究了一个具有量子点梯度AOS同质结的常温中红外光电探测器。该探测器在80K时在4.2 μm上实现了背景限制性能,比探测率达到2.7 × 10¹¹ Jones,在200 K前高于10¹¹ Jones,在280 K前高于10¹⁰ Jones,在300 K时在3.5 μm截止波长上达到7.6 × 10⁹ Jones。光谱仪、化学传感器和热像仪等应用也得到了验证,如图4g-i所示。

图4 北京理工大学在硫汞族胶体量子点带间跃迁红外探测器方面的研究

硫汞族胶体量子点带内跃迁红外探测器

与碲化汞宽光谱吸收与探测不同,硒化汞量子点由于采用带内跃迁吸收方式,可以实现窄带光响应。2014年,美国芝加哥大学团队首次开发了基于硒化汞胶体量子点的带内跃迁型红外探测器(图5a)。探测器带内吸收峰约为2000 cm⁻¹-3000 cm⁻¹,覆盖中波红外范围,最大的响应度为1.2 × 10⁻² A W⁻¹。通过掺杂调控,可使导带被两个电子充满,获得最小暗电流,随着器件工作温度从300 K的温度冷却到80 K,暗电流可以减少3200倍,在80 K时比探测率达到8.5 × 10⁸ Jones。同年,该团队证实了强约束胶体量子点的量子态中存在稳定的载流子并实现了带内光致发光。2016年,芝加哥大学团队研究了空气稳定的n型掺杂硫化汞胶体量子点和硫化汞/硫化镉胶体量子点的带内转换。此种核/壳结构改善了硫化汞核的热稳定性,对硫化汞胶体量子点材料的研究拓展了硫汞族材料在带内转换中的应用。

图5 代表性团队在硫汞族胶体量子点带内跃迁红外探测器方面的研究

2016年,法国索邦大学团队探索了配体修饰对硒化汞胶体量子点性能的影响,实现了每量子点0.1到2个电子之间的精确掺杂调控(图5b)。后来在2017年,该团队测量了不同配体交换的硒化汞胶体量子点的绝对能量水平(图5c),并提出了一种将功能化的聚氧乙烯(POM)嫁接到硒化汞胶体量子点表面的方法,降低了暗电流同时增加器件激活能(图5d-e)。2019年,该团队提出了碲化汞和硒化汞胶体量子点混合物,并将材料集成到光电二极管中(图5f)。在80 K时,比探测率可以达到1.5 × 10⁹ Jones,在相同温度和波长下,相比于单一硒化汞量子点探测器高两倍。2022年,该团队通过使用中红外瞬时反射率测量方法揭开了硒化汞和碲化汞材料之间的耦合关系(图5g)。这种硒化汞和碲化汞耦合的叠层结构保留了硒化汞的带内吸收,减少了暗电流,并缩短了响应时间。这种叠层材料结构被耦合到一个导引模式谐振腔上,使得来自带内跃迁的光电流信号增强了四倍。在80 K和5 μm时,比探测率达到10⁹ Jones,响应率达到3 mA W⁻¹。

2020年,北京理工大学团队提出了一种混合配体交换方法生产高迁移率的硒化汞胶体量子点薄膜,并与乙二硫醇的固态配体交换进行了比较。在直径为7.5纳米的量子点中,其迁移率达到了1cm²/Vs,与硒化汞/乙二硫醇薄膜相比,迁移率增加了100倍(图6a-c)。随后,该团队研究了硒化汞胶体量子点的尺寸分布对迁移率、导电间隙和带内光传导的影响。结果显示,迁移率与尺寸分布呈指数关系,而带内光导特性可以通过改善尺寸分布而得到增强(图6d-f)。基于硒化汞量子点探测器,该团队开发了一种高性能的带内热成像相机以及二氧化碳气体传感器(图6g),其范围从0.25到2000 ppm,灵敏度为0.25 ppm,响应速度达到了几个微秒,响应度为77 mA W⁻¹。与低迁移率硒化汞量子点探测器相比,响应速度及响应度提升1000倍及55倍。在80 K时,比探测率达到了1.7×10⁹ Jones,与低迁移率器件相比,性能高出一个数量级以上。图6h显示了基于硒化汞胶体量子点带内跃迁探测器的热成像。为了进一步提高基于硒化汞胶体量子点的带内跃迁探测器的性能,除能带结构设计之外,香港城市大学团队设计了一个基于硒化汞胶体量子点薄膜的金纳米盘阵列,并通过等离子体共振增强了光响应(图6i)。四个波段(4.2 μm、6.4 μm、7.2 μm和9.0 μm)的探测器被集成到等离子体纳米盘阵列。如图6j所示,响应速度分别达到145 mA W⁻¹、92.3 mA W⁻¹、88.6 mA W⁻¹和86 mA W⁻¹。

图6 北京理工大学在硫汞族胶体量子点带内跃迁红外探测器方面的研究

硫汞族胶体量子点红外上转换器件

红外-可见光上转换器件通过集成探测红外光子的红外探测器和激发可见光子的发光二极管,利用器件内部光-电-光的线性转换过程,避免了读出电路和复杂的电信号处理过程,能够直接可视化红外图像(图7a)。其具有很多优点:(1)无需通过繁琐的读出电路传输电信号,利用肉眼或可见光相机直接观察红外图像,突破了传统红外成像解析度的限制,显著提升了红外成像的分辨率;(2)无需复杂的信号采集、放大及处理过程,实现了实时红外上转换成像,显著提高了红外成像的帧频和灵敏度;(3)无需通过复杂的倒装键合工艺互连铟柱并对准每个像素,极大简化了工艺过程,显著降低了成像成本。尽管红外-可见光上转换成像技术得到了广泛关注,针对低成本、宽光谱、高分辨率、高灵敏度红外上转换成像的研究,目前仍存在以下诸多难点。首先,现有上转换器件受限于材料体系能带带隙限制,红外探测波段范围主要局限于近红外波段,很难拓展至短波、中波、甚至长波等重要的红外波段,极大限制了红外上转换器件应用范围。并且,目前上转换器件红外探测单元和可见光发光单元只是简单堆叠,使得上转换器件灵敏度较差,只能探测激光强度的红外光,无法探测到自然界中微弱的红外,致使应用范围严重受限。

基于以上挑战,2022年北京理工大学团队开发了基于胶体量子点的红外-可见光上转换器件,该器件使用碲化汞胶体量子点作为红外光敏层,硒化镉/硫化锌胶体量子点作为可见光发光层(图7b),首次拓宽了红外上转换器件的探测波段范围到2.5 μm短波红外,实现了短波红外到可见绿光的上转换(图7c)。研究人员发现发光单元亮度灵敏度在特定偏压范围内达到最大,传统上转换器件只是探测单元和发光单元的简单堆叠,使得发光单元工作电压区间无法处于最优范围,致使上转换器件灵敏度较差(图7d)。基于此,研究人员建立了红外上转换理论模型,通过模型结果确定与发光单元最优匹配的红外探测单元电阻特性,并设计优化红外探测单元结构,使得集成后的上转换器件的发光单元处于最优工作偏压区间,从而使上转换器件的灵敏度和上转换效率最大化(图7d)。最优匹配红外探测单元和发光单元集成的上转换器件具有超高的灵敏度,能够探测红外功率低至20 μW cm⁻²,如图7e所示。并且,此上转换器件具有接近30%超高的上转换效率,如图7f所示,此上转换器件的性能达到目前领先水平。该研究表明取代传统有机/无机材料的胶体量子点材料以及红外探测单元和发光二极单元的优化匹配方式为上转换技术中长期存在的挑战提供了潜在的解决方案。

图7 北京理工大学在碲化汞胶体量子点红外-可见光上转换器件方面的研究

硫汞族胶体量子点红外焦平面阵列

胶体量子点相比传统红外块体半导体在加工工艺方面具有显著优势,可以通过滴涂或旋涂方式在硅基读出电路上制备红外探测器,不需要晶格匹配的分子束外延过程及复杂的倒装键合工艺,大大降低了红外焦平面阵列探测器的制备成本。2016年,美国芝加哥大学研究团队报道了第一个胶体量子点焦平面阵列红外探测器,通过将碲化汞胶体量子点与硅基电路耦合,在低温下实现了中波红外成像,如图8a-c所示。在95 K时,量子效率、比探测率和噪声等效温差(NETD)分别为0.30%、1.46 × 109 Jones 和2.319 K。在5 μm处其噪声等效差为1.02 K,帧频达到了每秒钟120帧。胶体量子点薄膜中的缺陷会大大降低探测器的性能。因此,优化胶体量子点制膜工艺是提高探测器性能的关键技术。2022年法国索邦大学研究团队通过旋涂技术路线制备了光导型碲化汞胶体量子点焦平面阵列,阵列规模640×512,像元尺寸15 μm(图8d)。碲化汞胶体量子点焦平面外量子效率(EQE)为4%~5%,使用帕尔蒂尔冷却,其截止波长为1.8 μm。在图8e-f中,一个ITO覆盖的玻璃和一个硅片被放置在不同的试剂瓶前面。在可见光及短波红外波段,由于ITO玻璃、化学试剂以及硅片截止波长的不同,拍摄图片呈现出截然不同的状态。

图8 硫汞族胶体量子点红外焦平面阵列研究

2022年,北京理工大学团队提出了一种与硅基读出电路完全兼容的捕获型光电探测器的设计。量子点与读出电路的耦合可以通过顺序旋涂工艺完成。与垂直光电二极管结构不同,捕获型光电探测器不需要额外的顶层电极,大大降低了读出电路成像器件的制造复杂性(图9a-b)。为了获得最佳探测性能,采用了具有阻抗匹配的定制读出电路,在8英寸晶圆上进行晶圆级探测器制备(图9c)。在此项工作中,团队系统研究了三种不同类型的成像芯片,包括光导型、光伏型和捕获型探测器。光导型量子点可以输出均匀的图像,但其探测效率有限,导致灵敏度低。尽管在原理上,光伏型成像芯片应该具有最高的灵敏度及较低的暗电流和高量子效率。然而,在实际制造过程中,典型光伏碲化汞量子点成像器件受到掺杂剂不可控扩散的影响,从而性能下降。捕获型量子点成像芯片将外部电场和内部电场结合在一起,既具有高灵敏度,又能够实现较好的响应均匀性。无需高强度激光激发,使用黑体辐射源即可获得较高响应。捕获型成像芯片响应非均匀性约为4%,外量子效率达到175%,短波红外室温下比探测率约为2×10¹¹ Jones,并完成了中波红外成像(图9d)。

图9 硫汞族胶体量子点红外焦平面阵列研究

在单波段量子点焦平面阵列基础之上,该团队针对现有硅基互补金属氧化物半导体(CMOS)传感器探测光谱范围仅限于可见光(0.4 nm ~ 0.7 μm)和近红外(0.8 nm ~ 1.1 μm)的问题,通过对修饰在读出电路上的胶体量子点材料使用直接光刻工艺构建宽光谱CMOS兼容的跨波段紫外-红外量子点探测器,实现了从紫外到短波红外(300 nm ~ 2500 nm)的探测(图10a)。通过此项研究能够使用单片成像芯片实现单色或多光谱合并的高分辨率图像获取。图10b-d为使用多谱段宽光谱量子点探测器对包含580℃的电烙铁、硅片和紫外灯的场景进行成像,可以看到使用一个多谱段宽光谱量子点探测器模组便能够获取该场景下紫外、可见光、短波红外信息特征(电烙铁释放的能够穿透硅片的短波红外信息、紫外发光二极管释放的紫外光信息、线材和紫外发光二极管模组的可见光信息),通过图像的融合可以展现出从紫外到短波红外的光谱信息照片,提供更多的场景细节信息。

图10 硫汞族胶体量子点红外焦平面阵列研究

如表1所示,本文总结了代表性硫汞族胶体量子点单点探测器、焦平面阵列及红外-可见光上转换器件在探测波长、阵列规模、比探测率等核心参数指标性能对比。

表1 不同类型量子点探测器的性能对比。“F”和“S”分别代表焦平面阵列和单点探测器

总结与展望

本文对硫汞族胶体量子点红外光电探测技术的研究现状进行了总结,综述了硫汞族胶体量子点探测器和硫汞族胶体量子点焦平面阵列的发展趋势及应用方向。在过去的十年间,硫汞族胶体量子点从单点探测器到焦平面阵列都有着巨大的突破。但是,硫汞族胶体量子点体系还面临着很多挑战,还有诸多亟待解决的问题以及值得探索的方向。在单点红外探测器方面,需要进一步优化材料的物性(例如提升载流子迁移率、优化表面缺陷等),提升探测器的光电响应性能,研究长波红外探测器,以及优化探测器结构等。对于上转换器件,需要进一步拓宽红外探测波段范围,提升红外光子-可见光子上转换效率,最终实现高分辨率、高灵敏度的红外上转换成像。对于焦平面阵列,目前的研究主要集中在开发具有高分辨率和低噪声的大阵列红外探测器,在航天、军工、工业检测、消费电子等领域均有着广泛的应用。宽光谱红外成像仪被用于半导体检测、医疗药物筛选和农产品观察。硫汞族胶体量子点作为一种液态半导体材料,无需倒装键合及像素对准,可与焦平面阵列读出电路表面像素电极实现直接电学耦合。与块状材料相比,硫汞族胶体量子点可以降低制造成本,扩大探测器的应用领域。总之,胶体量子点技术是低成本、高性能红外探测器技术发展的必然趋势之一,相关研究成果将推动红外探测领域的发展,在应用方面不断激发新的可能。

这项研究获得科技部重点研发计划项目(2021YFA0717600)和国家自然科学基金(62035004、62105022、U22A2081)的资助和支持。

论文链接:

DOI: 10.3788/AOS230963

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 95浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 46浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 340浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 27浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 405浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 161浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 179浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 178浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦