干货|教你使用ADC精确测量电阻阻值

电子工程世界 2023-08-07 07:31

▲ 更多精彩内容 请点击上方蓝字关注我们吧!

现在很多单片机都有ADC功能了,10位或者12位的,使用ADC测量电压是很方便的,测量电阻阻值的话可以使用欧姆定律进行分压然后测量分压后的电压即可计算出电阻阻值,最简单的电阻测量电路如下图:

这时候测量点的电压计算公式为:Vo=R2 / (R1 + R2) * Uref。

这是最简单的测量计算方法。但是因为简单也会导致不少小问题,比如如果R1取值为2K,Uref为5V,而R2的阻值范围在5到10欧姆左右,那么R2分得的电压Vo=0.01247到0.02488,电压变化的范围过小,如果ADC是12位的,ADC的参考电压为3.3V,这时候ADC的采集值的范围在15到30,也就是AD值的变化范围有30-15=15个,而电阻的变化范围为10-5=5欧姆,也就是5欧姆的变化范围用15个AD值的变化来计算,那么AD测量的精度就是:5欧姆 / 15个 = 0.33欧姆,也就是AD值加1,计算得到的电阻值就要加0.33欧姆,这精度着实让人接受不了。

再比如R1和Uref的值不变,而R2的阻值范围在1K到2K之间,同样的计算方法得到R2的分压值Vo=1.1到1.65伏,AD值的范围为1365到2048,AD的测量精度为:1K/(2048-1365)=1.46。奇怪的是为什么AD值的范围这么大了,精度反而更很差劲呢?因为电阻的取值范围很宽,导致精度降低了。

怎么办?我想要测量一个比较精密的电阻的阻值R2,该怎么办?下面的方法是网上的电桥测量电阻的方法,我为了测量方便有所修改。电阻网络电路如下图:

R2的电阻阻值大约在100到200欧姆,我们取一个参考电阻R3为100欧,R1和R3阻值相同为2K。这样得到了U1和U2两个分压值,U2为固定电压U2=100 / (100+2000) * Uref。U1的值根据R2的变化而改变:U1=R2 / (R2+2000) * ref。得到了U1和U2之后可以计算压差:

△U=U1-U2,将这两个电压输入到运算放大器中去进行合理放大,使得得到的输出电压范围在ADC参考电压范围内尽可能的宽,这样使用ADC就能更加精确地测量到电压值。使用运放进行放大的电路如下图:

在R5=R6,R7=R8的情况下,运放的放大倍数m=R7 / R5。电路中的放大倍数为m=20。经运放放大后得到了Uo送到单片机系统的ADC中去进行AD采样。那么我们可以计算一下ADC测量得到的AD值和电阻R2之间的关系。

现在假定ADC系统的参考电压为Uadc,ADC采样位数为12位,ADC的测量值为A,那么Uo的计算公式如下:

Uo = A / 4096 * Uadc

而Uo也是运放的输出电压,根据电桥网络和运放进行计算可以得到:

Uo = (U1-U2) * m = ( (R2/(R1+R2) - R4/(R3+R4) ) * Uref * m

也就是说:

( (R2/(R1+R2) - R4/(R3+R4) ) * Uref * m = A / 4096 * Uadc ----------------------------①

上式中R1、R3、R4、m、Uref、Uadc都是已知的,那么根据ADC测量得到的值A’就可以轻松计算出来电阻R2的阻值。

上面说的是理论上的计算方式,的确是这样的,但是往往现实都比较残酷,由于电阻都有误差而且运放也不是绝对精密,那么已知的R1、R3、R4、m、Uref、Uadc几个参数都是和真实值有微小差别的,例如电阻R1的标称电阻为2K,误差为1%,万用表测量得到的阻值为1980欧姆,显然误差是有的,直接带入式子进行计算是不可行的。那怎么办呢?

解决办法总是有的。前面公式①中是根据ADC的测量值和几个已知参数来求电阻R2的阻值,那么我们就反过来,使用若干组已知的固定阻值的R2电阻接入电阻网络并测量出AD值A,来计算R1、R3、R4、m、Uref、Uadc几个参数,但是这几个参数有点多,6个未知参数需要6组式子才能解出来,非常的费劲,那么我们就简化一下计算方式。

我们将R4设为0欧姆,也就是U2接到GND,U2=0,这样式子①就能简化成:

R2/(R1+R2) * Uref * m = A / 4096 * Uadc ----------------------------②

这不简单多了!好,现在我们要求出式子中的R1的阻值和放大倍数m,两个未知数我们就需要两组已知的点(R2,A)来求出参数R1和m。这样取第一个点的测试电阻为R21,AD值为A1,第二个点的测试电阻为R22,AD值为A2,带入到式子②中去得到:

R21/(R1+R21) * Uref * m = A1 / 4096 * Uadc

R22/(R1+R22) * Uref * m = A2 / 4096 * Uadc

上面的式子除以下面的式子可以得到:

(R21/(R1+R21)) / (R22/(R1+R22)) = A1 / A2

进过整理之后得到:

R1=(R21 * R22) * (A2 - A1) / (R22A1 - R21 * A2)

这就求出来了R1的阻值了。

然后我们再求m的值,根据式子②可以得到m的计算公式为:

m = (A / 4096 * Uadc) / (R2/(R1+R2) * Uref)

我们将电阻网络的电源和ADC系统的参考电源连接到一起,也就是说Uref=Uadc,我们要保证电源的稳定性,可以使用TL431或者REF3030等高精度稳压芯片生产稳定电压源为电阻网络和ADC系统供电。由于Uref=Uadc,这样的话上面的式子得到了简化:

m = (A / 4096) / (R2/(R1+R2))

整理得到:

m = A(R1+R2) / (4096 * R2) ----------------------------③

式子③中R1在前面已经算出来了,那么m也求出来了。

到这里我们已经求出来了R1和m的值,后面就能根据这两个参数和测量出来的AD值求出来待测电阻R2的值了。由于Uref=Uadc,式子②变成:

R2/(R1+R2) * m = A / 4096

整理得到:

R2 = A * R1 / (4096*m - A) ----------------------------④

式子④已经简单到只需要A、R1、m就能计算出来R2的阻值了,并且使用的R1和m都是我们自己计算出来的值,而不是直接使用理论计算出来的值,精度提高了不少。同时我们可以发现由于Uref=Uadc,上面的式子②两端约分了,所有计算竟然和Uref、Uadc没有关系了,也就是说不管Uref、Uadc怎么变动,只要Uref和Uadc一直是相等的,所有参数和阻值的计算都不涉及到Uref和Uadc。但是我们最好要保证Uadc的稳定,不然测量出来的AD值会不准确的。

来源:https://blog.csdn.net/tq384998430/article/details/79073339


推荐阅读

干货 | 判断电感饱和的诀窍?
干货 | 为什么我的晶振又烧坏了?
干货 | 反激开关电源电路分析
干货 | 经常在PCB布局中使用的6种ESD保护方法,你都知道吗?

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角“三个小点”,点击“设为星标”。

欢迎扫码关注


电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论 (0)
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 47浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 55浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 68浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 93浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 40浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 63浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 38浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 99浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 66浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 90浏览
我要评论
0
2
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦