磷酸铁锂动力锂电池存储性能的影响因素

锂电联盟会长 2023-08-01 11:39
点击左上角“锂电联盟会长”,即可关注!
磷酸铁锂LiFePO4/石墨体系电池作为动力电池,具有高安全性、高循环寿命、绿色环保等优异特点,在电动交通工具、风光互补路灯甚至其他电网能源存储上的应用日益广泛。与所有电池的使用情况相同的是,磷酸铁锂/石墨体系动力电池在生产、销售和使用过程中无法避免电池的中长期搁置,即电池的存储问题。如何设定电池的存储条件,使其在存储前后的容量损失、功率损失、阻抗增加得最小,对于影响其存储性能因素研究具有非常重要的意义。
李佳等针对LiCoO2/石墨体系电池、Li(Ni1/3Co1/3Mn1/3)O2/石墨体系电池进行了不同SOC、不同温度下存储的测试,对存储前后电池的容量、充放电特性、功率、循环及耐过充、热稳定等方面的性能进行了对比,并对存储前后的电极材料结构、隔膜、电化学阻抗等进行了分析,得出结论:存储温度和SOC越高,电池性能衰减越严重。他们也以市售200mAh软包电池为研究对象,对LiFePO4/石墨体系电池进行了不同SOC下的高温55℃存储测试,对存储前后电池相关电性能及安全性能进行了对比,同时分析了55℃存储前后正极材料的结构变化,给出了LiFePO4/石墨体系在高温55℃下存储性能的变化规律。
本文以圆柱型9Ah铝壳LiFePO4/石墨体系动力电池作为研究对象,研究了电池在55、45、23和-10℃下存储过程中和存储后电池的容量、电压、交流内阻等的变化,并着重测试了电池在45、23℃下存储前后直流内阻、功率能力、恒流充入比、库仑/能量效率等的表征参数变化,并分析了这些参数变化对整车电池组性能的影响,给出了LiFePO4/石墨体系动力电池的最佳存储方式。
1实验
以圆柱32131型铝壳LiFePO4/石墨电池为研究对象,额定容量9Ah,正、负极活性物质分别为LiFePO4、人造石墨。45/55℃存储使用DHP200型电热恒温培养箱;低温使用低温冰箱;电性能测试设备为CT-3008W-5V100A-TF测试柜;交流内阻测试设备为HIOKI3554蓄电池内阻测试仪,AC1kHz。
1.1电池的储存实验一
(1)选择≥60只单体蓄电池,在常温下,以4500mA(0.5C)电流在3.65~2V区间充放电循环3周,得到测试前电池的容量值,最后分别以100%、50%、0%SOC状态(每种SOC20只电池)结束,使容量达到稳定,搁置15h后,测量其电压、交流内阻等基本数据后待测;
(2)分别选择4只100%、50%、0%SOC状态共12只电池放入55℃烘箱中搁置28天;分别选择4只100%、50%、0%SOC状态共12只电池放入45℃烘箱中搁置28天;分别选择4只100%、50%、0%SOC状态共12只电池放入23℃空调屋中搁置28天;分别选择4只100%、50%、0%SOC状态共12只电池放入-10℃冰箱中搁置28天;搁置过程中,每7天对这些电池进行内阻和电压测试;
(3)搁置结束后,电池上测试柜,在常温下,以4500mA(0.5C)电流在3.65~2V区间放充电循环3周,得到存储后的电池容量。
1.2电池的储存实验二
(1)选择≥45只单体蓄电池,在常温下,以9000mA(1C)电流在3.65~2V区间充放电循环3周,得到测试前电池的容量值,并按照FreedomCAR标准中的HPPC(5C放3.75C反馈)测试方法对电池进行测试,最后分别以100%、80%、50%、30%、0%SOC状态(每种SOC9只电池)结束,搁置15h后,测量其电压、交流内阻等基本数据后待测;
(2)分别选择3只100%、80%、50%、30%、0%SOC状态共15只电池放入45℃烘箱中搁置三个月;分别选择3只100%、80%、50%、30%、0%SOC状态共15只电池放入23℃空调屋中搁置三个月;搁置过程中,每28天对这些电池进行交流内阻、1C容量和HPPC测试。
2数据与讨论
2.1实验一存储28天过程中电池的电压、内阻、容量变化
图1中给出了实验电池存储28天过程中的电压(开路电压)变化,从图1可见不同温度、不同SOC状态下存储过程中开路电压变化并不明显,一致性最好的是在50%SOC态下,变化最大的是0%SOC态下。这与LiFePO4/石墨体系电池在不同SOC状态下的极化有很大关系,一般地,该系列电池在空电即0%SOC时极化最大,50%SOC极化最小。从图1中0%SOC不同温度下的电压变化关系也可见,温度升高有利于电池快速达到极化后的稳定状态。利用这一原理,在电池整车模组配组时,可以通过升温,快速将极化状态相近的电池挑选出来。
实验电池存储28天过程中的交流内阻变化如图2所示,从图2可见,交流内阻测试值随温度的升高而减小,这是由于温度越高,电池内部各个组分的导电能力越强。但经过存储后,恢复到常温再进行测试,所有电池的内阻均相差不大,但不同SOC、不同温度下存储后电池交流内阻变化还是比较明显的。45/55℃高温、100%SOC条件存储后的电池内阻增加明显较大,这是由于经过高温高SOC存储后,LiFePO4/石墨体系电池中石墨负极表面的SEI增厚,电解质LiPF6微量分解,使SEI成份形成了阻抗较大的无机盐类如LiF等。
表1中列出了电池经过28天存储后容量的变化数据,从数据中可见,相比于高SOC态,低SOC更利于电池的容量存储,从数据中可见,除低温0%SOC、-10℃情况下容量有损失外,其他0%SOC态下的电池容量均有一定程度的增加,这一现象的出现可能是由于经过存储后,正极材料二次粒子颗粒开裂,形成了新鲜界面,重新具有了脱嵌锂离子的活性。实际上,这一现象也出现在不经存储而直接进行循环的电池,这些电池在初始的几十周循环过程中,容量也是在逐渐增加的。
2.2实验二存储三个月过程中电池的交流内阻变化
图3和图4分别给出了不同SOC(100%、80%、50%、30%、0%)电池在25和45℃环境下搁置三个月过程中的交流内阻变化率曲线,对比两图可见,高温45℃搁置后的电池交流内阻增加明显高于25℃搁置的电池,这与实验一的结果是一致的。另外,我们也发现,不同温度搁置下,对于电池交流内阻影响最小的电池存储SOC是不同的,25℃下,影响最小的是80%SOC,而45℃下,各个SOC存储后交流内阻增加都很大,相对较小的是30%SOC。文献[5]中报道,影响电池搁置过程中交流内阻变化主要是正极LiFePO4电荷传递电阻随温度及SOC的变化。从我们的测试结果来看,正极LiFePO4电荷传递电阻随温度的升高,SOC从中部(30%~80%SOC)向两端(0%、100%)的变化增加越快。而当两种因素共同作用到电池上时,就表现出如图3和图4给出的结果,不同温度下对电池内阻影响较小的SOC是不同的。
2.3实验二存储三个月过程中电池1C容量变化
图5和图6分别给出了不同SOC(100%、80%、50%、30%、0%)电池在25和45℃环境下搁置三个月过程中的1C容量变化率曲线,对比两图可见,高温45℃搁置后的电池1C容量衰减明显高于25℃搁置的电池,这与实验一的结果也是一致的。0%SOC下存储对电池的容量衰减影响最小。
LiFePO4/石墨体系动力电池在存储过程中其容量的变化主要由以下三个因素共同作用造成:(1)负极不可逆容量的形成,主要是随着存储时间的延长,部分嵌入负极石墨层中的锂失去活性,变成死锂,无法通过放电回到正极,这些死锂的形成对容量变化的影响是负面的,因此随着SOC的增加,因为这种原因失去的容量会越多;(2)根据欧姆定律:U=UR+Ur=I(R+r),式中:U为电池电动势;UR为电路端电压;Ur为电池内耗电压;R为外电路电阻;r为电池本身内阻;I为放电电流。由于受到搁置过程中内阻增加的影响;Ur增加,端电压UR减小,放电时端电压提前到达,放电时长较存储初期减小,则使放电容量降低,这种影响也是负面的;(3)正极LiFePO4随着存储时间的延长,二次粒子颗粒开裂,形成了新鲜界面,重新具有了脱嵌锂离子的活性,这种影响是正面的,因此容量增加可能会出现在存储的初期。从以上三点分析来看,就可以看出,实验数据是综合了这三种影响之后的最终结果。
2.4实验二存储三个月过程中电池的直流内阻变化
图7和图8分别给出了不同SOC(100%、80%、50%、30%、0%)电池在25和45℃环境下搁置三个月过程中的直流内阻变化率曲线,对比两图可见,高温45℃搁置后的电池直流内阻反而略低于25℃搁置的电池。直流内阻随SOC的变化在不同温度下搁置规律是相似的,增加率由高到低分别是0%、100%、30%、80%和50%SOC。
2.5实验二存储三个月过程中电池的功率能力变化
图9、图10和图11、图12分别给出了不同SOC(100%、80%、50%、30%、0%)电池在25和45℃环境下搁置三个月过程中的放电功率能力变化率和反馈功率能力变化率曲线,对比两图可见,高温45℃搁置后的电池直流内阻反而略低于25℃搁置的电池。功率能力随SOC的变化在不同温度下搁置规律是相似的,增加率由高到低分别是0%、100%、30%、80%和50%SOC。
从以上的结果来看,电池功率能力的变化与电池直流内阻的变化规律是完全相同的,这是由于动力电池功率能力的变化依赖于电池直流内阻的变化,它是电池在不同简单工况下充放电时的最直接反映。电池直流内阻主要由欧姆内阻和活化阻抗两方面组成,欧姆内阻的变化规律从数值上与交流内阻变化相近,因此,直流内阻变化规律与交流内阻变化规律都是随SOC从中部(30%~80%SOC)向两端(0%、100%)的变化而增加越快,但是活化阻抗则受温度影响略突出一些,温度越高,活化能越小,即活化阻抗越小。所以测试数据反映出45℃搁置后的电池直流内阻反而略低于25℃搁置的电池。
3结果
通过测试电池在不同温度、不同SOC下搁置后的交流内阻、容量、直流内阻、功率能力等电池性能的变化,发现电池在搁置过程中各种性能的变化规律是不同的,在电池的实际存储中,需要根据存储时间的长短和电池的使用方向选择合适的存储条件。例如电池在功率能力方面使用频率较高时,为保证功率能力,需要适当的提高存储温度,而电池只在低倍率简单充放条件下使用时,则可选择偏低的存储温度。综合上述测试结果,常温下50%SOC的电荷状态是一种比较有利于电池性能发挥的存储状态。
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 75浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 70浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 171浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 73浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 45浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 71浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 52浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦