CAN-FD总线通信应用理解


关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

来源:汽车那点事


传统的车载CAN总线最高支持500 kbit/s的传输速率,每帧只能承载8 bytes的数据,由于传输速率和数据长度的限制,在自动驾驶和智能网联对网络通信的高要求背景下,使用传统 CAN 通信势必会导致总线负载率过高从而导致网络拥堵,传统CAN总线通信的瓶颈逐渐凸显。

2011年,为满足带宽和可靠性的需求,Bosch首次发布了 CAN-FD(CAN With Flexible Data-Rate)方案,CAN-FD继承了传统CAN总线的主要特性,使用改动较小的物理层,双线串行通信协议,依然基于非破坏性仲裁技术,分布式实时控制,可靠的错误处理和检测机制,在此基础上对带宽和数据长度进行优化,将逐步取代传统CAN成为下一代主流汽车总线系统,与车载以太网搭配构建未来汽车的网络骨架。

1. CAN-FD概述

1.1 基于OSI参考模型的CAN-FD 协议分层

CAN-FD 的协议架构(网络分层)与传统 CAN 保持一致,故后文中对协议架构部分的说明将不对CAN与CAN-FD进行区分。

CAN 协议也是基于 ISO/IEC 7498-1 中规定的开放系统互联(OSI)基本参考模型,该模型将通信系统结构划分为 7 层。自上而下分别为应用层(层 7)、表示层、会话层、传输层、网络层、数据链路层和物理层(层 1)。

考虑到 CAN 作为工业测控底层网络,其信息传输量相对较少,信息传输的实时性要求较高,网络连接方式相对较简单,因此,CAN 总线网络底层只采用了 OSI 7 层通信模型的最低 2 层,即物理层和数据链路层,而在高层只有应用层。CAN 的数据链路层又分为逻辑链路控制(LLC)子层和媒体访问控制(MAC)子层。物理层定义信号怎样传输,完成电气连接,实现驱动器/接收器特性;MAC 子层是实现CAN 协议的核心,它的功能主要是传送规则,即控制帧结构、执行仲裁、错误检测、出错标定和故障界定;LLC子层的功能主要是报文滤波、超载通知和恢复管理。

物理层和数据链路层的功能可由 CAN 接口器件来完成。应用层的功能是由微处理器完成的。在ISO 11898中对 CAN 协议层级与 OSI模型层级的关系进行了说明,图 1 描述了 CAN 协议中数据链路层和物理层与 OSI模型的关系。

图1 CAN分层结构与OSI模型对比

1.2 CAN-FD优势分析

CAN-FD相比传统CAN总线,其优势主要有以下3点。

(1)传输速率更快

FD全称是 Flexible Data-Rate,顾名思义,表示CAN-FD 的帧报文具有数据场波特率可变的特性,即仲裁场合数据控制场使用标准的通信波特率,而到数据场就会切换为更高的通信波特率,车端常用的为2Mbit/s和5Mbit/s,从而达到提高通信速率的目的。

图2 CAN标准帧结构
图3 CAN-FD标准帧结构(数据长度最大为16 bytes)
图4 CAN-FD标准帧结构(数据长度为20~64 bytes)

(2)有效数据场更长

传统CAN报文标准帧的有效数据场只有8bytes,每帧携带的数据量很少,CAN-FD 对有效数据场的长度进行了很大的扩充,标准帧的有效数据场最大可达到64bytes,大大提高了每帧报文中所能携带的数据量。

(3)更小的改动

CAN-FD保留了传统CAN总线协议的核心特征,这使得在ECU和收发器等硬件层面上相较于车载以太网更易实现和应用,且由于CAN-FD与传统CAN对物理层的要求基本一致,CAN-FD的 ECU 和收发器对传统CAN兼容,OEM不论是采用直接升级为CAN FD总线的方案还是在切换过渡的阶段先采用混网的方案,在技术实现和开发成本控制层面都可以达到预期。

2. CAN-FD在产品车型上的应用

以某车型为例,该项目已对 CAN-FD网络进行了量产化应用,该项目基于电子电气功能架构搭建了集合多种车载网络协议的网络架构,集信息域、互联域、自动驾驶域、底盘动力域的多域融合的一汽新一代整车网络架构,该架构具备支持拓展 L2+级自动驾驶和整车级 OTA 技术的能力,具有高功能安全、高信息安全的技术优势。

2.1 功能定义

本车型CAN-FD部分主要实现ADAS自动驾驶和动力车控等功能,ADAS 功能分为驾驶智能辅助功能和自动驾驶功能,包括拨杆换道、自动换道、自适应巡航、高速代驾、拥堵跟车、自动泊车等基本或高阶的功能,涉及到 ADAS 域控制器与感知传感器、底盘、动力等执行控制器的控制交互。

2.2 方案设计

对于 2.1 章节所描述的功能需求,在以往项目设计时多采用 CAN 总线进行传输相关报文,但随着ADAS 功能水平升级,这些 ADAS 功能的实现对网络通信有着更高性能、低时延、高带宽及ASIL B+的功能安全要求,传统CAN通信已无法满足。一汽红旗在本车型上首次应用 CAN-FD 搭建 ADAS 等域的网络架构,实现 ADAS 域控制器与感知控制器及执行控制器之间的高实时性和稳定性的通信传输。

在本车型网络架构设计中,将 ADAS 功能相关的报文分为 2类,控制类和感知类。再根据每个单元功能的功能安全ASIL等级确定每条报文和信号的ASIL等级,进而制定每条信号的E2E校验策略。由于舒适娱乐采用传统CAN的网络骨架,所以在中央网关中做了 CAN 转 CAN-FD(CAN-FD 转 CAN)的功能设计,并对网关做了功能安全冗余设计,网关功能安全设计内容在此不做赘述。

2.3 设计实现

2.3.1 车型CAN-FD节点拓扑结构设计

在本车型项目中,CAN-FD 节点主要有网关控制器、ADAS 域控制器、ADAS 感知控制器、动力域控制器、底盘域控制器(图 5)。

图5 车型CAN-FD节点拓扑

其中网关主要实现 PDUCAN-FD 路由功能、CAN-CANFD 路由功能;ADAS 域控制器实现 ADAS 规划决策功能;ADAS 感知控制器实现环境感知和定位功能;动力域控制器实现动力分配和控制功能;底盘域控制器实现制动和转向功能。

2.3.2 路由策略设计

从 CAN 到 CAN-FD 的路由,考虑到传输效率,网关将接收到的多个 CAN 报文打包到一个 CAN-FD 报文中进行发送,为保证报文矩阵的可扩展性和打包解析的便利性,CAN-FD中每8个bytes与传统CAN报文相对应,每连续的8 bytes中至少预留32 bits用于未来功能的扩展。

网关的报文路由形式分为CAN-CAN路由,CANCANFD 路由和 CANFD-CAN 路由 3 种,CAN-CAN 路由遵循传统 CAN 路由原则,在此不做赘述,后文主要对后2种路由形式进行详细说明。

CAN-CANFD路由:

网关可以将多条报文进行组包后转发,也可以不组包单报文转发;单报文转发仅改变源网段报文的ID和报文类型(帧结构和传输速率),但不改变数据场里信号的位置和数据场长度(DLC),这种转发形式称为报文路由。直接路由可以通过底层软件自己完成,不需要上层软件的参与,路由时间延迟低,一般可控制器在2 ms以内。

图7 报文路由过程示例

CANFD-CAN路由:

CAN-FD到CAN总线的消息转发需要将DLC长达64 bytes的CAN-FD的消息帧拆分为多个DLC最长为8 bytes的CAN消息帧,需要数据场中的信号拆分重组,改变报文的ID、报文类型、DLC长度以及信号位置,这种路由方式称为信号路由。信号路由过程需要上层软件的参与,路由时延相比报文路由要高一些,想实现功能安全,网关也需要做更多的安全冗余设计工作。

2.4 CAN-FD通信性能验证

针对本项目设计,搭建了台架对 CAN-FD相关节点进行了一致性测试和硬件在环(Hardware In the Loop,HIL)验证,在网络的关键性能指标如总线负载率、吞吐量、平均时延和峰值时延、网络利用率和网络效率都得出了不错的结果数据。

图8 信号路由过程示例

3. 基于CAN-FD的新一代汽车网络架构

车联网、V2X 和自动驾驶对汽车网络高带宽、低延迟的高要求,使得以传统CAN为骨架的汽车网络架构已逐步退出历史舞台。车载以太网技术的发展为高带宽提供了可能性,但车载以太网由于其点对点通信和非实时的协议特性使其无法满足车控功能对高实时性和一对多通信的需求,而 CAN-FD 基于传统CAN 的核心特征,继承了总线仲裁和广播通信特性,非常适用于车控信息的交互。利用 CAN-FD 与车载以太网的协议特征,主机厂已构建出以CAN-FD和车载以太网为网络骨架的新一代智能汽车的网络架构。

车载以太网在一汽的量产车型上也已得到应用,用于实现了安全防护、车况查询、远程控制、手机泊车、移动网络、WiFi 功能、定位导航、信息推送方面功能。在该车型上,以车载以太网和 CAN-FD 为主干网络,研发工程师搭建了面向服务的集信息域、互联域、自动驾驶域、底盘域的多域融合的新一代整车网络架构。

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 71浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 66浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 42浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦