几种射频通信接收机原理框图及优缺点

01

超外差接收机


典型的超外差式接收机如下图


振荡器产生一个始终比接收信号高一个中频频率的振荡信号,在混频器将振荡信号与接收信号相减产生一个新的频率即中频,这就是“外差”。



射频信号处理过程:


射频信号经天线接收后,经过带通滤波器BPF1的频带选择和低噪声放大器LNA放大,通过混频器Mixer将射频信号先下变频到中频,在中频段对信号进一步进行信道选择(带通滤波器BPF2)和放大(AMP);

再使用解调器Demod(IQ解调)将中频信号解调为基带信号Baseband。


优点:


1. 在射频链路进行频带选择,在中频链路进行信道选择。

     提高滤波器Q值,易于设计实现。


2. 合理分配增益,避免单级过高的增益造成放大器自激。

    此外较低的中频放大器更易设计。


3. 方便AD采样。


4. 由于采用“差频”作用,外来信号必须和振荡信号相差为预定的中频才能进入电路,而且选频回路、中频放大谐振回路又是一个良好的滤波器,其他干扰信号就被抑制了,从而提高了选择性。


缺点:


组合频率干扰较多,特别是镜像干扰,位于射频信号相对本振频率的镜像频率处的干扰信号将会通过混频器下变频到中频频带,且无法用信道选择滤波器进行滤除,恶化了接收信号质量。


解决办法:


1.采用镜像抑制滤波器。


2.采用正交混频器,正交混频也叫复数混频, 本振只有正或负频率分量,混频后只有(f_RF+f_LO)或(f_RF-f_LO).


3.采用高中频技术,通过增高中频频率使得镜像频率远离射频通带。


02

零中频接收机


射频信号处理过程:射频信号经天线接收后,经过带通滤波器BPF的频带选择和低噪声放大器LNA放大,通过解调器Demod(IQ解调)将射频信号直接下面变频到基带,对基带信号进行低通滤波LPF,然后放大(AMP)。

优点:


1.不存在镜像干扰。


2.结构简单,所需元器件数量少,易于集成,低功耗。


缺点:


1.本振泄露,由于混频器的本振频率与射频信号频率相同,本振信号容易泄露到射频链路中产生干扰,甚至通过接收天线反向辐射到空间中,形成对邻近信道的干扰;


2.直流偏置,本振自混频产生的直流分量进入基带,恶化信号的信噪比,甚至使基带放大器饱和,影响动态范围。


3. I/Q不平衡(I/Q imbalance),在射频处做IQ混频,IQ失配问题更严重。链路增益分配过于集中还可能会增加放大器自激的可能性。


4.闪烁噪声(1/f)


5.偶次谐波(even harmonic) 


03

数字中频接收机


数字中频接收机是在超外差接收机的基础上,将第二次下变频和之后模拟基带处理部分数字化,即在中频直接A/D采样的接收机结构。



射频信号处理过程:射频信号经天线接收后,经过带通滤波器BPF1的频带选择和低噪声放大器LNA放大,通过混频器Mixer将射频信号先下变频到中频,在中频段对信号进一步进行信道选择(带通滤波器BPF2)和放大(AMP);然后将第一中频信号送入ADC,对输出的数字信号进行数字下变频解调(Digital Demod)。


优点:


对于超外差接收机,数字中频接收机的优点是通过数字处理方法,可避免在模拟基带处理中可能产生的I/Q两路不平衡的问题。


缺点:


对ADC性能要求较高,需要高性能ADC:


1.根据接收机的中频频率,要求ADC达到相应的采样率。


2.根据接收机的前级增益,要求ADC具有足够的分辨率和噪声性能。


3.根据接收机对镜频等杂散的抑制度,要求ADC具有足够的线性度。


4.根据接收机的动态范围,要求ADC具有充足的动态范围。


5.根据接收机的信道带宽,要求ADC需要有大于该带宽的带宽。


04

名词解释


滤波器Q值:品质因数


Q值是滤波器的品质因数,定义为中心频率除以滤波器带宽。


滤波器品质因数,用滤波器的中心频率F(单位HZ)与-3dB带宽B(单位HZ)的比值来表达,即Q=F/B

描述了滤波器分离信号中相邻频率成分能力。

品质因数Q越大,表明滤波器的分辨能力越高,即越能选出单一的频率。


相对带宽:信号带宽与中心频率之比。


自激振荡:自激震荡是指不外加激励信号而自行产生的恒稳和持续的振荡。

如果在放大器的输入端不加输入信号,输出端仍有一定的幅值和频率的输出信号,这种现象就是自激振荡。


本振泄露(LOL:Local Oscillator Leakage):本振指本地振荡器LO。


RF混频器有两个输入端口和一个输出端口,如图所示。


理想混频器将产生一个输出,它是两个输入的乘积。


就频率而言,该输出的频率应当是FIN + FLO以及FIN – FLO,不含其它项。


如果任一输入不在驱动状态下,则不会有输出。


 图. 理想混频器


在图中,FIN被设置为基带频率为1 MHz的FBB,FLO被设置为本振频率为500 MHz的FLO。


如果是理想混频器,它将产生一个输出,其中包含两个信号音,频率分别为499 MHz和501 MHz。然而,如下图所示,真实混频器的输出还将产生未混频的FBB和FLO。


未混频的FBB处产生的能量可以忽略不计,因为它远离所需的输出,并且将被混频器输出之后的RF组件滤除。


未混频的FLO就是泄露的本振信号,其产生的能量就是一个问题,它非常接近或在所需的输出信号内,并且很难或无法通过滤波去除,因为滤波也会滤除所需的信号。


可驱动混频器的本振 (LO) 已经泄漏到混频器的输出端口。


LO还有其他途径可以泄漏到系统输出端,例如通过电源或跨越硅本身。


无论本振如何泄漏,其泄漏都可被称为LOL。



图. 真实混频器


镜像频率:上面提到的本振频率FLO与输入信号频率FIN通过混频器产生两个输出FIN + FLO以及FIN – FLO,它们关于FLO对称,如果只需要FIN – FLO,那么FIN + FLO就是镜像频率。


直流偏置:为了理解直流偏置的起源和影响,我们可以参照图四的接收通道进行说明。


如图四(a)所示,本振口,混频器口,LNA之间的隔离度不好,LO(本振信号)可以直接通过LNA和混频器,我们叫做“本振泄露”, 这种现象是由于芯片内部的电容及基底耦合的,耦合的Lo信号经过LNA到达混频器,和输入的LO信号混频,叫做“自混频”


这样会在 C 点产生直流成分;


近似的情况如(b),从 LNA出来的信号耦合到混频器的本振输入口,从而产生了直流分量。



直流分量有什么害处?


答:直流分量会导致A/D的低几比特失效(被直流分量淹没)。


解决办法有两种,要么在A/D采样之前利用模拟电路进行补偿,要么在采样后在数字域进行去DC。



☆ END ☆

精彩回顾

  • 腔体滤波器技术提升解决方案

  • 一座5G基站它的成本是由哪些部分组成?

  • 腔体滤波器设计之----自动单腔频率温飘

  • 秒仿糖葫芦串形低通

  • 秒仿糖葫芦型低通后续之----低通优化

  • [超级全]一百多页的射频基础知识资料,看这一篇就够了

  • TE01模介质滤波器滤波器

  • 无源互调浅析

  • 如何选择谐振杆的尺寸使功率容量达到最佳

  • 金属介质混合+零腔案例

  • 三模并联耦合介质波导滤波器仿真实例

  • 同轴高低阻抗型低通的公差影响几何?

  • Coupfil对高阶强零点生成的结果偶会出错

  • 陶瓷滤波器的各项制备工序讲解_简介篇

  • (干货)陶瓷滤波器讲解----材料篇

  • (干货)陶瓷滤波器讲解----材料制备篇

  • [东南大学射频讲义]射频与微波基础知识

  • 陶瓷滤波器讲解----陶瓷材料检测篇

  • BAW,SAW和FBAR滤波器剖析

  • 比较全的射频基础知识讲座

  • 射频连接器只看这一篇就够了!设计、查阅、收藏宝典!

  • LTCC、IPD、SAW、BAW、FBAR滤波器入门以及应用场景分析

欢迎加入滤波器、功放、射频收发信、基站、天线、环形隔离器、功分耦合、连接器、线缆负载等射频微波大家庭

点击上侧公众号可关注后加群

本团队提供可信可靠的射频功放有源无源相关产品各种定制化服务,响应快、专业强、质量可信,敬请咨询,电话微信同号18665903037

点"在看"为本文点个赞,才算看完呦

5G通信射频有源无源 5G通信,微波射频器件,TR组件,有源组件,无源器件,滤波器,双工器,合路器,同轴腔体,LC滤波器,高通带阻,功分耦合,环形器,隔离器,功放PA,低噪放LNA,同轴开关,线缆组件,转接器,连接器,毫米波器件以及设备,波导
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 197浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 148浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 836浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 217浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 229浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 186浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 133浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 169浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 496浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 86浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 177浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1046浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 171浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 67浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 301浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦