有损传输线:趋肤效应简介

原创 EETOP 2023-07-21 11:51
欢迎关注EETOP半导体资讯备用号

本文为您介绍传输线中由于趋肤效应现象引起的高频导体损耗。

在许多应用中,将传输线建模为无损结构可以是线路真实世界行为的合理可接受的表示。这种无损模型使我们能够深入了解传输线的不同属性。然而,如果我们需要考虑信号衰减,我们必须考虑传输线的不同损耗机制。

传输线模型中的有损分量

在之前的一篇文章中,我们了解了传输线的等效电路(图 1)。

https://www.allaboutcircuits.com/technical-articles/investigating-lossless-transmission-line-phase-constant-and-infinite-bandwidth

图 1. 传输线的集总元件等效电路

在此模型中,R 和 G 分别表示导线每单位长度的电阻和分隔导体的电介质每单位长度的电导。为了能够评估传输线中的导体和介电损耗,第一步是计算出 R 和 G 的值以及它们如何随不同参数变化。本文的重点是评估导体电阻 R。

直流导体电阻

导体单位长度的直流电阻由以下熟悉的公式给出:

其中 ρ 是导体的电阻率,单位为 Ω-m(电阻率是电导率 σ 的倒数);A是导体的横截面积,单位为m 2。在印刷电路板中,铜的室温电阻率约为1.724×10 -8 欧姆-米(或6.787×10 -7 欧姆-英寸)。有了横截面积,我们就可以轻松计算出直流电阻。例如,半径为 r 的圆形横截面导体的直流电阻为:

传输线中有两个导体:信号导体及其返回路径。为了考虑两者的电阻,我们可以将校正因子ka 纳入方程 1:

ka 的值 取决于传输线的结构。例如,如果返回路径与信号路径相同,则 ka 等于 2。但是,如果 PCB 走线的返回路径是宽平面,则可以使用校正因子 ka =1,因为宽平面的电阻在直流时非常低(高频时情况并非如此,因为高频时返回电流主要在信号路径下方流动)。  

高频电流分布

在直流时,导体横截面积上的电流分布是均匀的,并且导体的整个横截面积在承载电流方面同样有效。然而,随着频率的增加,电流倾向于流过导体表面下方的浅层。这种现象称为趋肤效应,会减少导体的有效横截面积,从而导致导体的交流电阻增加。大部分电流流过的层的深度由集肤深度 δ 估计,计算公式如下:

其中 µ 是导体的磁导率 (H/m),σ 是导体的电导率(S/m)。上式的重要结果是导体的有效截面积随着频率的平方根而减小。因此,导体的高频电阻与f成正比。图 2 概念性地显示了交流电流如何被限制在圆形和矩形导体的趋肤深度内。

图 2. 圆形导体 (a) 和矩形导体 (b) 的集肤效应。

更准确地说,集肤深度实际上指定了电流密度相对于导体表面的值减少 1/e 的距离。因此,电流密度在趋肤深度之后不会突然降至零(图 3)。

图 3. 圆形横截面导体中电流分布的概念图。

然而,为了推导出导体有效截面积的一些简单方程,我们通常假设整个电流均匀分布在导体表面以下的集肤深度中。在以后的文章中,我们将更详细地讨论这种近似的微妙之处。

趋肤深度有多小? 

公式 3 显示趋肤深度是频率以及两种材料特性(即电导率和磁导率)的函数。对于铜,将 σ=58×10 6 和 μ 0 = 4π×10 -7  H/m 代入公式 3 后,在 1 GHz 时趋肤深度约为 2μm(或 0.08 mils)。表 1 给出了铜在其他一些频率下的趋肤深度。

表 1.不同频率下铜的近似趋肤深度


请注意,在低至 15 MHz 的频率下,电流穿透力等于 0.5oz的铜厚度(1oz相当于35微米也就是0.035mm)。当我们达到更高的频率时,趋肤深度变得越来越小。请记住,如果我们将方程 3 的不同参数代入 MKS 单位制中,趋肤深度 δ 将以米为单位。 

由于其相对磁导率较高,铁磁金属(如镍和铁)的趋肤深度远小于具有类似电导率的非铁磁导体。镍和铁的相对磁导率分别为100和1000。图 4 比较了一些示例金属的趋肤深度与频率的关系。

图 4. 各种金属的集肤深度与频率的函数关系。

集肤效应在多种情况下都会表现出来。例如,集肤效应使得水下潜艇的长距离通信变得非常困难。假设海水的典型参数为 ε r =72、σ=4 S/m 和 μ r =1,您可以验证海水在 5 MHz 时表现得像良导体。在此频率下,海水的趋肤深度为 11.2 厘米!通过这个较小的集肤深度,您可以计算出波幅在 51.8 cm 距离处减少到传输值的 1%。即使在非常低的频率下,发射的波也会显著衰减。   

估计导体的高频电阻

在高频下,电流主要局限于趋肤深度。因此,导体的有效截面积可近似为δ乘以导体周长。作为示例,考虑具有圆形横截面且半径为 r 的导体。导体的有效横截面积可近似为 2πrδ,产生的交流电阻为:

代入等式 3 中的 δ,我们有:

将直流电阻与导体的高频电阻等同起来,我们可以定义趋肤效应的起始频率。例如,等式 2 和 4 相等后,圆形导体的集肤效应的起始频率为:

因此,使用双对数图,圆形横截面导体的电阻与频率曲线如图 4 所示。

图 4. 双对数图上圆形横截面导体的电阻与频率的关系。图片由Reto B. Keller提供

虽然我们获得了圆形导体的上述曲线,但在所有导体的电阻与频率曲线中观察到类似的行为。下面的图 5 将宽度为 0.25 毫米、厚度为 35 微米(1 盎司)的 PCB 铜迹线的电阻与直径 D=1 毫米的圆形铜线的电阻进行了比较。

图 5.  PCB 铜迹线与圆形铜线的电阻比较。图片由Reto B. Keller提供

对于 1 mm 的直径,公式 5 得出  fskin=70 kHz,这与橙色图一致。使用类似的过程,我们可以推导出矩形导体中集肤效应的起始频率方程。您可以在 Howard Johnson 的著作《高速信号传播:高级黑魔法》中找到详细信息。图 6 显示了直径为 1 英寸的 22 号铜线环的高频测量电阻。 

图 6.  铜线的测量电阻与方程模型的关系。

在上图中,红色标记对应于测量的电阻值,而线条对应于分析预测的电阻,该电阻随频率的平方根而增加。可以看出,测量值大致随着 f 的增加而增加。

用良导体电镀微波元件

良导体的趋肤深度在微波频率下非常小。因此,对于微波元件,我们可以使用镀有良导体的不良导体,而不是使用良导体。两者的损耗性能应该是相似的。镀上千分之几英寸的高导电金属可以完全隐藏下面不良导体的影响。例如,可以使用镀银黄铜波导代替由实心银制成的波导,性能几乎没有下降,但材料成本却大大降低。您可能还会遇到由涂有银的空心金属管制成的天线结构和射频功率导体,出于同样的原因,管的“皮肤”具有出色的导电性。

在计算电镀部件的趋肤深度时,应注意电镀金属的电导率可能与该金属的固体形式不同。原因是电镀金属本质上是多孔的,并且密度低于其固体形式。此外,值得一提的是,即使是穿过电流方向的微小划痕也会影响微波元件的有效电阻。在以后的文章中,我们将继续讨论并仔细研究集肤效应现象背后的物理原理。

来源:EETOP编译自allaboutcircuits


直播报名提醒

EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 104浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 134浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 90浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 92浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 154浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 131浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 135浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦