聊聊闪存存储的延迟可预测性

SSDFans 2023-07-21 08:59


如何利用神经网络预测闪存尾端延迟的发生

    由于用户对低且稳定的延迟(微秒级)的需求越来越大,人们对SSD的百分比延迟越来越关心,即SSD有99%的概率可以提供低且稳定的延迟,但有1%的概率产生几倍于正常情况的延迟,而这1%的高延迟被称为尾端延迟。尾端延迟有什么影响?如何降低尾端延迟的影响?如何在存储环境下利用神经网络?这些疑问,本文将一一解答。


尾端延迟与Hedged Request

百分比延迟

    也许你已经查了维基百科中”百分比延迟“的定义,但我想对大多数人而言有点晦涩难懂,下面我将举一个简单的例子以帮助你理解。

    首先,我们先列举出一系列收集到的延迟:

23,20,21,20,23,20,45,21,25,25

    对它们排序:

20,20,20,21,21,23,23,25,25,45

    接下来可以选择前x%的延迟,例如假设我们想要得到50th百分比延迟,则选择前5个延迟:

20,20,20,21,21

    然后选择这一组延迟中最大的那个——即21——就是这一组延迟中的50th百分比延迟(也可以写作p50),同理,p90是25。

尾端延迟

    尾端延迟就是百分比延迟中末尾的(通常p99之后)那些延迟。看起来尾端延迟占比并不多,但当系统处理的请求达到10^6个数量级,可能足足有104个请求处理延迟远高于正常情况——你不会想成为那不幸的1%,对吗?

    分析SSD的内部行为后,本文作者认为尾端延迟的产生源自SSD内部日益复杂的内部活动,如垃圾回收、负载均衡等,和用户请求的冲突。为了降低尾端延迟或者降低尾端延迟的影响,业界提出的方案分为两大类:

  • 白盒子方案

此时SSD内部的行为可知,通过改进SSD内部架构来降低尾端延迟。这种方式无疑是直接而强有效的,但是不利于推广到市场。

  • 灰盒子方案

此时不需要修改SSD的内部架构,但是需要修改上层的软件栈。

  • 黑盒子方案

以各种预测为代表,既不需要修改上层软件栈,也不需要修改SSD内部架构,是目前最流行的解决方案。其中一个经典的方案是Hedged Request,它的原理和应用环境将在下文中介绍。

Hedged Request

    为了保证数据安全、实现负载均衡,现代的存储系统通常存在一定冗余,而多个不同的SSD的内部行为同时和用户请求产生冲突的概率非常低。基于这样的思考,Hedged  Request将一个请求发给一个SSD后,若等待请求完成的时间超过了阈值,则重发请求到另一个可用的SSD。如下图所示:

    然而,传统Hedged Request中,快SSD需要等待一段时间(等待慢SSD处理的时间超过阈值)后才能处理请求,对于微秒级SSD而言,这个等待时间是致命的。如果可以学习SSD的特征,预测将要变慢的SSD而及时将请求重发到快SSD中,则可以节约出等待的时间,从而降低闪存组的尾端延迟——这就是LinnOS完成的工作,如下图所示,用户发送请求后,若经过LinnOS网络预测得知该SSD将变慢,则提前告知用户重发请求,随后请求将被送到下一个SSD,减少了Hedged Request中的等待时间。


LinnOS的三大挑战

    设计LinnOS存在三大挑战,接下来将一一阐述。

  • 对用户输出什么结果?

    需要输出具体的延迟(如120μs)吗?虽然这样更灵活,但是一方面,对用户而言,120μs或者125μs其实区别不大,另一方面,如此精确的输出意味着准确率低,并不划算。那么如果输出一个延迟范围,如80~100μs、100~120μs呢?此时准确率稍高了些,但不够(仅60%-70%),处于区间交界处的延迟往往预测不准确。回顾Hedged Request的原理,其实对用户而言,知道SSD是”快“或者”慢“就足够了!所以LinnOS使用简单的二分类模型。

  • 使用什么信息进行预测?

    看起来一系列信息都和SSD快或慢有关:读写请求?请求的块内偏移?长期的写入历史?然而,作者发现这些请求都对提高精确度没有明显帮助。首先,由于当前SSD常有内置写缓存,写之后的读延迟常常没有明显提高,更为常见的其实是数据从缓存”冲“(flush)入SSD后,读延迟会更高。其次,一组I/O请求会通过条带均匀地写入各个通道或者芯片,它们写入同一个芯片的概率很低,所以块内偏移这个特征其实并不重要。最后,GC或者flush通常发生时间短,短期写入历史足矣预测。

    因此,可以使用SSD当前I/O队列长度来预测SSD快或者慢:一个直观的感受是,当I/O队列较长时,SSD处理通常比较慢。但是这样并不能体现SSD的内部活动的发生,因此额外增加了历史四条请求进入SSD时的队列长度和完成请求的时间。若某个请求进入SSD时队列短而完成请求的时间长,意味着SSD内部行为可能和用户请求冲突了。

  • 如何最小化预测错误的影响?

    作者分析发现,若将一个快的SSD预测为慢的从而错误地重发了,将带来微秒级延迟,而若将一个慢的SSD预测为快,将带来毫秒级延迟,比第一种情况严重许多,所以作者在训练时对第二种情况施加了更加严重的惩罚以减少它们的发生。此外,还补充了hedged request以减少预测失败的损失。


实验结果与总结

    作者上层使用了不同的软件产生负载,底层使用同构的消费级SSD阵列或者异构企业级SSD阵列测试它们的表现,以读延迟为指标展示结果。总共比较了7种不同的方案:

  • Base:无优化

  • Clone:同时发送两份请求,选择先返回的SSD的结果返回给用户

  • Hedge95:等待p95之后重发请求

  • Hedge IP(inflection point):和上一个相比,使用针对负载优化后的等待时间

  • HeurSim:队列较长时重发请求

  • HeurAdv:队列较长、且考虑历史信息(和LinnOS一样)后决定重发请求

  • LinnOS-Raw:没有hedged补偿的LinnOS

  • LinnOS+HL:最终的LinnOS方案

实验结果如下图:

The End

致谢


感谢本次论文解读者,来自华东师范大学的硕士生俞丁翠,主要研究方向为智能存储。


 点一下“阅读原文”获取论文

SSDFans AI+IOT+闪存,万物存储、万物智能、万物互联的闪存2.0时代即将到来,你,准备好了吗?
评论
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 119浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 162浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 619浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 464浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 236浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 60浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 209浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 189浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 140浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 117浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 190浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 149浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 299浏览
我要评论
0