被垄断的NAND闪存技术

电子工程世界 2023-07-20 07:30

▲ 更多精彩内容 请点击上方蓝字关注我们吧!

随着密度和成本的飞速进步,数字逻辑和 DRAM 的摩尔定律几乎要失效。但是在NAND 闪存领域并非如此,与半导体行业的其他产品不同,NAND 的成本逐年大幅下降。这是因为 NAND不再依赖光刻来图案化更小的单元。相反,NAND 依赖于不同的架构,也就是 3D NAND,该架构于 2013 年首次商业化。

此后,NAND 制造商通过添加越来越多的存储单元层来改善 NAND 的密度和成本结构。行业焦点从光刻转移到了沉积和蚀刻处理步骤。因此,自从 3D NAND 推出以来,密度每年以非常稳定的速度提高 30%。

自从推出 3D NAND 以来,密度的增加使得每比特 NAND 成本每年下降约 21%,尽管未来可能会遇到一些挑战,但规模扩展预计将继续下去。美光认为,NAND 每比特成本可以继续以每年百分之十几到百分之十的速度下降,而 DRAM 则更难扩展,目标只是每年降低个位数百分比的成本。

最终结果是,尽管从 2018 年到 2022 年每年 NAND 晶圆厂的设备采购总额约为 150 亿美元,但 NAND 总产能每年持续增长超过 30%。这主要是由于制造效率的提高。但是,如果将新设备创新推向市场,那么继续增加产能需要相应增加的资本支出(资本支出强度)。由于当前半导体市场比较低迷,目前市场上 NAND 大量供过于求,因此大型资本支出项目被推迟。

NAND中这些大规模成本改进的主要原因是晶圆厂可以在工艺步骤数没有大规模相应增加的情况下增加密度。3D NAND中最关键的步骤是薄膜沉积和高纵横比蚀刻。

NAND 的一种过于简化的制造工艺是交替沉积薄膜,然后进行一些不同的蚀刻,穿过堆栈并将单元分开/连接到外部。Lam Research 是许多此类工艺步骤的领导者,其中最关键的是高纵横比蚀刻。



NAND 扩展的4 条途径



有4种主要途径可以扩展NAND闪存每片的存储容量。

  1.  逻辑缩放 – 每个单元存储的位数。这需要每个单元存储 2^n 个电压电平。

  2. 垂直缩放 – 垂直堆叠的 NAND 单元数量。

  3. 横向缩放 – 可以适合 2D 向量的单元的大小/数量。

  4. 架构扩展——增加密度并减少单元/外围设备开销的各种技术。

一种方法是逻辑缩放,即每个物理存储单元存储更多位。每个单元存储的每个附加位都需要使单元必须保持的可辨别电压状态的数量加倍。IE:每单元 1 位 (SLC) 2 个电压电平、每单元 2 位 (MLC) 4 个电压电平、每单元 3 位 (TLC) 8 个电压电平、每单元 4 位 16 个电压电平(QLC),每单元 5 位 (PLC) 的 32 个电压电平。

理想情况下,这可以通过增加存储位数而不增加存储单元的物理数量来实现“自由”缩放。每单元 4 位 QLC 于 2018 年问世,SK 海力士从英特尔收购的 Solidigm 团队一直在谈论每单元 5 位 PLC、浮栅 NAND。Kioxia 的研究人员甚至于 2021 年在低温条件下展示了每个单元 7 位。

然而,逻辑缩放的主要缺点是减少了每个存储状态的电子数量。增加每个单元的电压状态数量意味着划分每个存储单元的电子存储容量。每个状态的电子较少会增加可变性并破坏可靠性。2D NAND 已经通过 TLC 技术达到了这一极限,而 3D NAND 也正在快速接近类似的极限。展望未来,这标志着逻辑扩展的结束。

制造商发现,制造更小的单元(横向+垂直),每个单元容纳的电子更少,使得每个单元更高的位数是站不住脚的。例如,Solidigm 的 192 层 PLC就失败了,并且由于成本结构较差而无法大批量生产。

与 TLC 相比,三星236 层以上的 V9 代 3D NAND 的 QLC 代际扩展也较差。在V7代中,QLC的密度比TLC高40%。对于 V9,QLC 的密度仅比 QLC 高 20%。这是因为QLC存储单元无法像TLC单元那样缩小那么多。因此,美光和 SK 海力士相信 TLC(每单元 3 位)NAND 将是最具成本效益的长期解决方案。

然后是垂直扩展,这是过去十年中密度增加的主要途径。目前的高纵横比 (HAR) 蚀刻深度限制为 6 至 7微米,每个单元的最小厚度约为 40 纳米。到目前为止,制造商只能实现多达 128 个字线层堆栈(每个约 50 纳米)。超越这一点需要将多个decks单独蚀刻并组合在另一个之上。Solidigm 的 192 层设计使用四个 48 层decks,而海力士的最新 238 层一代使用两个decks,每个decks有 119 个活动字线。

理想情况下,deck越少越好,因为需要重复的制造步骤更少,堆叠decks时出现对齐错误的风险也更低。否则,垂直缩放的唯一其他方法是减少每个存储单元和字线的 Z 厚度,或者增加 HAR 蚀刻深度,我们将在下面详细介绍。这就是东京电子可以从 Lam Research 手中夺走大量业务的原因。我们稍后描述的沉积变化可能同样具有影响力。

然后我们在 X 和 Y 方向上进行传统的横向缩放。这可以通过增加存储器通道孔的密度或通过减少狭缝和存储器块细分的面积开销来完成。前者已经被淘汰,因为孔不能变得更小,需要将所有层安装在侧壁上以形成电荷陷阱单元。目前,孔之间的间距也尽可能紧密。

对于后者,美光和 WDC/Kioxia 正在增加狭缝之间的通道孔数量,减少狭缝总数,从而实现更好的孔面积利用率。这意味着他们的栅极替换工艺必须水平深入各层,以正确去除所有 SiN 残留物并干净地进行后续的 W 填充。

自 64 层一代以来,行业标准一直是狭缝之间有 9 个支柱。美光 232 层已达到狭缝之间的 19 个柱,而 WDC/Kioxia BiCS6 162 层已达到狭缝之间的 24 个柱,尽管我们尚未发现这种情况在市场上广泛普及。他们的 218 层 BiCS8 更进一步,不再需要一排虚拟孔来分隔子块。

虽然与垂直缩放相比,这些横向缩放技术带来的密度增益较小,但它确实可以在不增加 WFE 强度的情况下实现线性成本降低。除此之外,还可以通过使用交错楼梯设计来减少阵列两侧楼梯的开销面积,从而实现横向缩放。然而,这是以增加布线密度和字线连接区域的复杂性为代价的。

最后,还有架构缩放,重点关注 CMOS 逻辑外围电路的放置位置。设计从简单的 CMOS Next to Array,到最近的 CMOS Under Array,通过在 NAND 堆栈下方构建电路来节省芯片面积。然而,由于 NAND 阵列处理步骤的严酷性,CMOS 逻辑处理技术存在局限性。CMOS 键合阵列 (CBA) 通过在单独的晶圆上制造逻辑,然后通过混合键合将逻辑键合到存储器阵列晶圆上来解决此问题。

这使得更先进的逻辑和更高的布线密度能够实现阶梯和子块划分的进一步横向扩展。由于逻辑和存储器是并行制造的,因此可以通过降低设计/工艺复杂性和周期时间来抵消粘合多个晶圆所增加的成本。长江存储凭借其 64 层 Xtacking 1.0 和令人惊叹的 1.0 微米间距混合键合处于领先地位。WDC/铠侠 BiCS8 218 层也将采用混合键合工艺,其他制造商也将效仿。

大多数扩展途径几乎已经被利用。垂直扩展一直是扩展的主要方式,但即便如此,当前的制造设备也开始采用这种方式。


3D NAND结构和制造流程



一开始将氧化物和氮化物薄膜的交替层沉积到基础晶片上。每层厚度在 20 至 30 nm 之间。每个堆叠的理论极限可以超过 250 层高,接近 7 微米高。然后添加厚硬掩模,为高纵横比 (HAR) 沟道孔蚀刻做好准备。这种反应离子蚀刻工艺可挖出一系列深度为宽度 70 倍的孔。通道孔的圆度和整个孔深度的均匀性对于减少存储单元性能的变异性至关重要。对于具有多个decks的设计重复这些步骤,然后将这些decks堆叠在一起。由此,沟道孔被多层填充以形成电荷陷阱单元,每一层沉积在侧壁上使孔逐渐变窄。
接下来是金属替代栅极工艺。穿过所有层蚀刻狭缝以形成暴露堆叠侧面的沟槽。这样可以进行氮化物层的折返以及随后通过 ALD 和钨字线填充完成的势垒沉积。在阵列的侧面蚀刻出阶梯,以使字线层暴露于垂直接触。

最后,位线和金属互连形成在上面并与制造的CMOS电路连接,其中包括字线驱动器和用于NAND接口的其他外围电路。由此我们可以看出,3D NAND 高度依赖于 HAR 蚀刻和沉积能力来扩展密度和性能。

如前所述,主要限制是在制造过程中蚀刻通道孔。这就是为什么每 GB 的原始处理时间(以及处理成本)的扩展预计会比我们观察到的历史趋势放缓。


NAND市场最新动态



NAND持续疲软,产能严重过剩。由于供应过剩,目前行业晶圆开工率在 60% 左右。库存情况也十分巨大。这是自 1997 年以来最严重的供需失配。
现在,NAND主要厂商都在降低利用率,试图减少库存,让市场恢复平衡。然而,技术转型仍需要一些投资。最大的 NAND 生产商(市场份额 34%)三星在 NAND 工艺方面落后。当前一代仍然主要是128层,176层NAND仍然只占很小的一部分

这远远落后于 SK 海力士和美光,后者的技术节点超过 200 层。三星今年正试图投入资金将其大部分产能转变为 236 层。他们实际上在大部分生产中跳过了一个节点。虽然他们对技术转型的投资将提振今年的 NAND WFE,但这只会推迟复苏。一旦技术转型完成,他们将再向市场推出 70% 以上的比特。三星想要强制整合,这是从公司最高层向下推动的策略。

与 2023 年相比,2024 年 NAND 资本支出将更为精简。预计到 2025 年,由于巨大的库存和低利用率提供缓冲,NAND 供需恢复平衡,NAND 资本支出才会强劲复苏。长期的需求将继续增长,行业最终需要投资来满足这一需求。
来源:https://www.semianalysis.com/p/nand-flash-monopoly-broken-tokyo

推荐阅读

激光雷达在辅助驾驶领域正在沦为“花拳绣腿”?
比Wi-Fi快100倍,全球首个LiFi标准发布!
中国芯片进口持续下滑
台积电回应镓、锗出口管制:不会对生产造成直接影响

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角“三个小点”,点击“设为星标”。

欢迎扫码关注

电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 68浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 71浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 44浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 52浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 168浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 73浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 70浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦