如何优化SiCMOSFET的栅极驱动?这款IC方案推荐给您

安森美 2023-07-18 19:00
本文作者:安森美业务拓展工程师Didier Balocco
在高压开关电源应用中,相较传统的硅MOSFET和IGBT,碳化硅(以下简称“SiC”)MOSFET有明显的优势。使用硅MOSFET可以实现高频(数百千赫兹)开关,但它们不能用于非常高的电压(>1000 V)。而IGBT虽然可以在高压下使用,但其 "拖尾电流 "和缓慢的关断使其仅限于低频开关应用。SiC MOSFET则两全其美,可实现在高压下的高频开关。然而,SiC MOSFET的独特器件特性意味着它们对栅极驱动电路有特殊的要求。了解这些特性后,设计人员就可以选择能够提高器件可靠性和整体开关性能的栅极驱动器。在这篇文章中,我们讨论了SiC MOSFET器件的特点以及它们对栅极驱动电路的要求,然后介绍了一种能够解决这些问题和其它系统级考虑因素的IC方案。


  
SiC MOSFET特性

与硅器件相比,SiC MOSFET的跨导(增益)更低,内部栅极电阻更高,其栅极导通阈值可能低于2 V。因此,在关断状态下,必须向SiC MOSFET施加负栅源电压(通常为-5 V)。SiC器件的栅源电压通常要求在18 V ~ 20 V之间,以降低导通状态下的导通电阻(RDS)。SiC MOSFET工作在低VGS下可能会导致热应力或由于高RDS而可能导致故障。与低增益相关的其他影响会直接影响几个重要的动态开关特性,在设计适当的栅极驱动电路时必须考虑这些影响,包括导通电阻、栅极电荷(米勒平台)和过电流(DESAT)保护。

 二 
导通电阻

在低VGS时,一些SiC器件的导通电阻与结温特性之间的关系曲线看起来是抛物线*(由于内部器件特性的组合)。(*这适用于安森美M1和M2 SiC MOSFET。)当VGS = 14 V时,RDS似乎具有负温度系数(NTC)特性,即电阻随温度升高而降低。SiC MOSFET的这一独特特征直接归因于其低增益,这意味着如果两个或更多的SiC MOSFET并联工作在低VGS(负温度系数)下,可能会导致灾难性损坏。因此,只有当VGS足以确保可靠的正温度系数工作时(即VGS>18V),才建议将SiC MOSFET并联工作。

图1:M1或M2 SiC MOSFET的导通电阻与结温之间的关系曲线
新一代M3 SiC在所有VGS和所有温度范围都显示正温度系数

图2:M3 SiC MOSFET的导通电阻与结温之间的关系曲线

 三 
栅极电荷

向SiC MOSFET施加栅源电压(VGS)时,电荷被传输以尽快使VGS从VGS(MIN)(VEE)和VGS(MAX)(VDD)升高。由于器件的内部电容是非线性的,因此可以使用VGS与栅极电荷(QG)的关系曲线来确定在给定的VGS下必须传输多少电荷。SiC MOSFET的这种 "米勒平台 "发生在较高的VGS上,而且不像硅MOSFET那样平坦。不平坦的米勒平台意味着在相应的电荷范围内,VGS不是不变的,这也是由于器件低增益导致的。同样值得注意的是,QG = 0 nC(关断SiC MOSFET所需的电荷量) 不会发生在VGS = 0 V时,因此VGS必须为负 (本例中为-5 V),以使栅极完全放电。


由于我们想测量导通或关断SiC MOSFET所需的电荷量,我们的曲线只绘制了Qg的增量(或Qg的累积或Qg的变化)。这个数值也叫Qg。这可能会引起混淆。我们需要将这张图解读为需要的能量,而不纯粹是存储在栅源电容器中的能量。

图3:SiC MOSFET栅源电压与栅极电荷的关系

使用负栅极驱动阻断电压主要是为了减少关断状态下的漏电流。这也是由于跨导增益低造成的。使用负的阻断电压还可以减少开关损耗,主要是在关断期间的开关损耗。


因此,几乎对于所有的SiC MOSFET,都建议在关断状态下使用的最小VGS为-5 V < VGS(MIN) < -2 V,有些制造商规定电压低至-10 V。

 四
欠压保护(DESAT)

DESAT保护是一种过电流检测,起源于IGBT的驱动电路。在导通时,如果IGBT不能再保持饱和状态("去饱和"),集电极-发射极电压就会上升,同时全集电极电流流过。显然,这对效率有不利影响,在最坏的情况下,可能导致IGBT的灾难性故障。所谓的 "DESAT "功能监测IGBT的集电极-发射极电压,并检测何时出现潜在的破坏性条件。虽然SiC MOSFET中的故障机制有些不同,但会有类似的情况,在最大ID流过时VDS可能上升。如果导通期间的最大VGS太低,栅极驱动导通沿太慢,或者存在短路或过载情况,就会出现这种不理想的条件。在满载ID的情况下,RDS会增加,导致VDS意外上升。当SiC MOSFET发生欠饱和事件时,VDS的反应非常迅速,而最大漏极电流继续流过不断增加的导通电阻。当VDS达到预定的阈值时,就可以激活保护。应特别注意避免感测VDS的延迟,因为延迟会掩盖这种现象。因此,DESAT是栅极驱动电路的一个重要的辅助性保护。

 
动态开关

SiC MOSFET的导通和关断状态有四个不同的阶段。所示的动态开关波形呈现的是理想工作条件的情况。然而,在实践中,封装寄生物,如引线和邦定线电感、寄生电容和PCB布局会极大地影响实际波形。合适的器件选择、最佳的PCB布局,以及对设计好的栅极驱动电路的重视,对于优化开关电源应用中使用的SiC MOSFET的性能都是至关重要的。

图4:SiC MOSFET导通序列的4个阶段

 六
栅极驱动电路的设计要求

为了补偿器件低增益,同时实现高效、高速的开关,对SiC栅极驱动电路有以下关键要求:

  • 对于大多数SiC MOSFET,驱动电压在-5 V > VGS > 20 V之间时性能最佳。栅极驱动电路应能承受VDD = 25 V和VEE = -10 V,以适用于最广泛的可用器件

  • VGS必须有快速的上升沿和下降沿(在几ns范围内)

  • 在整个米勒平台区域内,有能力提供高的峰值栅极灌电流和拉电流(数安培)

  • 当VGS下降到米勒平台以下时,需要提供一个非常低的阻抗保持或 "钳位",以实现高的灌电流能力。灌电流的额定值应超过仅对SiC MOSFET的输入电容放电所需的电流。10A左右的峰值灌电流最小额定值应适用于高性能、半桥电源拓扑结构

  • VDD欠压锁定(UVLO)水平,与开关开始前VGS>~16 V的要求相匹配

  • VEE UVLO监测能力确保负电压轨在可接受的范围内

  • 能够检测、报告故障和提供保护的去饱和功能,使SiC MOSFET长期可靠运行

  • 支持高速开关的低寄生电感

  • 小尺寸驱动器封装,布局尽可能靠近SiC MOSFET

 七
栅极驱动器方案

安森美的NCP51705是一款SiC栅极驱动器IC,提供高的设计灵活度和集成度,几乎与任何SiC MOSFET兼容。NCP51705集成许多通用栅极驱动器IC所共有的功能,包括:

  • VDD正电源电压最高28V

  • 高峰值输出电流:6 A拉电流和10 A灌电流

  • 内置5 V基准可用于偏置5 V、20 mA以下的低功耗负载(数字隔离器、光耦合器、微控制器等)

  • 单独的信号和电源接地连接

  • 单独的源和灌输出引脚

  • 内置热关断保护

  • 单独的非反相和反相TTL、PWM输入

图5:NCP51705 SiC栅极驱动器框图

然而,该IC集成几个独特的功能,能够以最少的外部元器件设计出可靠的SiC MOSFET栅极驱动电路。这些功能包括:

  • 欠压保护(DESAT)

  • 电荷泵 (用于设置负电压轨)

  • 可编程的欠压锁定(UVLO)

  • 数字同步和故障报告

  • 24引脚,4毫米×4毫米,热增强型MLP封装,便于板级集成

 八
总结

在选择合适的栅极驱动器IC时,SiC MOSFET的低增益给设计人员带来了难题。通用的低边栅极驱动器不能高效和可靠地驱动SiC MOSFET。NCP51705集成一系列功能,为设计人员提供了一个简单、高性能、高速的解决方案,高效、可靠地驱动SiC MOSFET。


希望以上这些内容可以在实际设计过程中对大家有所帮助。将安森美加入星标,更新不容错过。


⭐点个星标,茫茫人海也能一眼看到我⭐


「 点赞、在看,记得两连~ 」


安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦