一、开关和放大器
MOS管最常见的电路可能就是开关和放大器。
G极作为普通开关控制MOS管。
让MOS管工作在放大区,具体仿真结果可在上节文章看到。
下图示例电路中,芯片1正常工作时,PG端口高电平。
如果芯片1、芯片2有时序要求,在芯片1正常工作后,使能芯片2。可以看到芯片2的使能端初始连接VCC为高电平,当芯片1输出高电平后,(关注公众号:硬件笔记本)MOS管导通,芯片2的使能端被拉低为低电平,芯片2开始正常工作。
这时MOS管起到的就是反相的作用。
下面是一个3.3V-5V信号通讯中电平转换电路。
假设:左边接芯片信号 3.3V,右侧芯片信号5V。
电路中接入2个NMOS管。
这里要注意的是,I2C输出状态有低电平、高阻两种状态。
当SDA低电平, D1 的 GS 压差73.3V可以导通,VGA_SDA也是低电平 。
当SDA高阻抗状态,D1的S引脚有R2上拉到3.3V,MOS管GS截止。由于VGA_SDA由R5上拉到5伏,这时VGA_SDA就是5V。
当VGA_SDA低电平,由于D1中有体二极管的存在,S初始被R2上拉,当D极是0的时候,S极会被钳在导通电压约0.2V左右,(关注公众号:硬件笔记本)最终I2C_SDA为低电平;
当VGA_SDA高电平,D1的D极高电平 ,而S被R2上拉,这时MOS管不会导通,所以I2C_SDA输出高电平。
SCL信号类似原理。
1. 原理图
上面电路实现的效果是:
IC1和IC2都输出低电平时,LED熄灭;
其它情况下,LED都会点亮。
MOS管在这里实现的仍是开关的功能,但是避免IC1和IC2的端口直接相连造成信息干扰,同时芯片控制端电压比较低,可以驱动较大的负载。
由于IC1和IC2任何一个输出高电平时,都会导通一个MOS管,从而让LED可以点亮。
常见的简单电源切换电路如图1所示,但这个电路应用条件是有限制和缺陷的,比如电池电压VBAT不能大于外部电压VIN,常见的电池电压为3.7~4.2V,外部电压为USB的5V时没有问题,但是电池电压为7.2V就不能使用了;(关注公众号:硬件笔记本)肖特基二极管的压降虽然已经较小,但是依旧有零点几伏左右,损失的功耗较多,5V外部电压进来就只变成4V多了;外部电压供电时,会通过P型MOS管的体二极管给电池进行非正规充电,当然这点可以通过将Q4 MOS管左右翻转一下解决。
为了解决上述这些缺陷,项目中有时会使用较为复杂的改进电路,如图2所示。其工作原理简介如下:使用外部电源VIN时,三极管Q7导通,三极管Q6截止,P型MOSFET Q3由于栅极和源极通过电阻R4都接了电池电压VBAT,两者相等,Q3截止,电池电压VBAT无法达到输出端VCC;外部电源VIN接通时,VIN首先通过Q1 MOSFET的寄生二极管到达输出端VCC,同时Q2三极管导通,使Q1 MOSFET的栅极拉低到GND为低电平,所以Q1的栅源极电压小于0且达到导通阈值电平,Q1导通,然后Q1体内的寄生二极管就截止了,(关注公众号:硬件笔记本)外部电源VIN通过Q1达到输出端VCC。此时,Q5 MOSFET的栅源极电压接近相等,Q5和体二极管均截止,防止了外部电源VIN对电池的非正规充电。
当没有外部电源VIN时,三极管Q7截止,三极管Q6导通,Q3 MOSFET的栅极电压为低电平,栅源电压小于0且达到导通阈值电平,Q3导通,然后通过Q5的寄生二极管达到输出端VCC,而Q5的栅极此时为低电平,因此栅源电压也小于0,Q5导通,其寄生二极管截止,电池电压到达输出端VCC。
由于电源主通路使用了三个MOSFET,MOSFET在完全导通后其压降远远小于肖特基二极管(只有零点零几伏),因此其导通损耗很低;而三个三极管虽然额外增加了一些功率损耗,但是由于三极管工作在完全饱和状态,在饱和导通压降一定的条件下,导通电流可以通过电阻值设置的相对较小,因此功耗也不会太高。同时该电路无论电池电压是否大于外部电源,都可以使用,通用性相对较为广泛。
声明:
推荐阅读▼
电路设计-电路分析
EMC相关文章
电子元器件