模内电子:智能表面的未来?

原创 TechSugar 2023-07-12 08:03


未来,表面——无论是厨房电器、汽车内饰、医疗设备,甚至家具,都将变得越来越智能。嵌入式照明、触摸敏感度、加热,甚至触觉反馈,将使无生命且经常被忽略的表面成为无缝集成用户控件的显著设计特征。如今,人们正在探索制造这些智能表面的最佳方法。


据IDTechEx最新报告“In-Mold Electronics 2023-2033”指出,模内电子(IME)的新兴制造有望为生产功能表面提供更简单、更可持续的方法。与传统的机械开关相比,IME能够将重量和材料消耗降低70%,同时需要更少的部件来实现相同的功能。竞争性方法,如功能性薄膜粘结以及在IME部件中集成LED等组件具有明显的优势。


IME制造方法


IME的材料要求包括导电和介电油墨、导电粘合剂、透明导体、基材和热塑性塑料。此外,IME效益保证可持续性(包括生命周期评估)、目标应用和所需功能,包括电子组件的更多集成。


智能表面制造方法比较。来源:IDTechEx


IME是成熟的模内装饰(IMD)工艺的延伸,在该工艺中,带有装饰涂层的热成型塑料通过注射成型转换为3D组件。由于IME是现有技术的发展,因此许多现有的工艺知识和设备可以重复使用。


IME从根本上描述了一种制造方法——是一种利用现有功能创建组件的新方法。IME制造工艺结合了四种现有的制造方法,这些方法通常不一起使用:丝网印刷(功能性和装饰性材料)、拾取和放置(如下图所示,如果包含SMD零件)、热成型和注射成型。



智能表面制造方法尽管与IMD有相似之处,但与电子功能集成相关的技术挑战仍然很多,这些电子功能必须能够承受热成型和注塑成型。由于电路是嵌入式的,因此非常高的制造良率至关重要,因为单个故障可能会导致整个部件失效。


在材料方面,导电油墨、介电油墨和导电粘合剂需要在涉及高温、压力和伸长率的成型和模塑步骤中实现。此外,堆栈中的所有材料都需要兼容。因此,许多供应商开发了为IME设计的功能性油墨组合。在广泛采用IME材料之前,需要建立IME材料组合,使材料供应商能够从即将到来的增长中获益。


事实上,IMD也可以实现传感器融合。卓越的多模传感精度支持最广泛的A级表面(采用模内涂层法等的热塑性复合材料技术)材料选择,可以为HMI控制器提供多种功能。开放式可扩展框架可在不同厚度下提供最大的性能和最高的精度,例如集成多个压电应变传感器,利用精确的力度实现更大的数据收集和先进的机器学习功能。


IME的应用机会


汽车内饰是一个巨大的潜在市场,但IME在其他领域也有巨大潜力。制造装饰性、轻量化、功能性部件的能力对于飞机内饰来说尤其引人注目,因为减轻重量可以节省燃料;医疗器械是IME提供可擦拭干净的、经济高效的功能性表面的另一个有前途的应用。


可替代一组按钮的触摸+力传感器(8通道)+处理器SoC


与当今的刚性PCB技术非常相似,IME的长期目标是成为一种成熟的平台技术。因此,生产一个组件/电路只需要发送一个电子设计文件,而不是目前昂贵的咨询IME专家的过程。随着越来越多的人接受,它仍将需要明确的设计规则、符合既定标准的材料,而最重要的是开发电子设计工具。


智能表面在汽车内饰中的应用


如果不说智能表面,就不能完整地理解汽车内饰的趋势——利用IME将触摸传感器和照明集成在面板内部的智能表面正在取代机械开关。推动这一转变的技术就是将电子、装饰和机械功能结合在一个组件中的IME,通过丝网印刷导电迹线和将简单的SMD组件安装到膜上热成型,然后注射成型来实现。


在汽车中,智能表面可以替代机械按钮实现极简内饰。直观易用的触摸区域让驾驶者的眼睛停留在道路而不是显示器上;取代电容式触摸锁传感器,能够在金属下实现检测;取代静态显示按钮,减小显示器尺寸和成本,并实现新的触摸感应显示器形状;通过在固态表面下感应,去掉笨重的旋钮和控制器。


IME使多功能组件(如中央控制台和头顶控制面板)更轻、更简单、更易于制造。另一个好处是结构和电子/装饰功能的解耦,从而使“版本控制”更加简单,因为用于热成型和注射成型的相同模具可用于制造具有不同外观和功能的零件。此外,IME还支持新的用例,例如在前排座椅的背面添加电子和触敏功能,一些汽车OEM设计团队已经确定了40多个不同的用例。


智能表面也有可能发展为提供比简单的电容传感器或开/关按钮更复杂的交互。例如,印刷压力传感器可能会进入控制面板,从而提供更大范围的输入。触觉反馈也有可能被广泛整合,因为如果驾驶员将视线从道路上移开的需求降至最低,驾驶行为既更令人满意,也可以更安全。


自动驾驶还未到来,但汽车企业已经做好了准备,利用内饰个性化和与外部世界的无缝连接为驾驶者提供更多自主权。


例如,Faurecia内饰系统对HMI的改进,以新的装饰材料实现了面板上的高分辨率AMOLED屏幕、功能性智能表面、新型移动设备连接、自动调整舒适位置系统。


汽车内饰HMI


之前用于智能手机的曲面玻璃也已应用于汽车内饰,具有表面可涂布、印刷、弯曲成为曲面,且抗刮擦、耐冲击的功能。


曲面玻璃应用


利用IME可以将塑料表面做出木头、金属、皮革的效果,配合背光信息显示、氛围灯照明和触摸敏感的控制表面使用。控制器与触摸显示屏相互作用,可以控制座舱温度和照明等。


智能材料内饰


方向盘上配备的多功能交互系统自由浮动,可以为驾驶员提供显示,操作方便。


智能表面方向盘


消费电子或工业应用


目前专注于汽车IME工艺的公司并不多,大部分公司都兼顾消费电子或工业应用电子部件。IME可以简化现有HMI表面,甚至将HMI功能引入新位置,潜在应用包括白色家电、医疗设备、台面设备,甚至智能家具。


例如,Morph有20000多个压力点的触摸表面具有难以置信的精度,极其灵敏,可以跟踪X和Y、滑动/滑行运动、压力和速度。这些表面可以用于各种各样的东西,从键盘到钢琴、鼓垫、MIDI控制器、绘图板、多媒体控制器,甚至是游戏控制器。


触摸表面


在智能手机中,手机的侧面或背面采用智能表面,可以实现自然的单手控制,为自拍提供新的用户界面;手机侧面或背面超灵敏的空中触发器和游戏控件,可以将游戏提升到一个新的水平;更换音量、电源和静音机械按钮,可以缩小手机外形,实现新的尖端工业设计。


在移动设备中,最小尺寸、最低功耗的触摸界面适合新一代增强现实眼镜;将智能手表的命令和控制集成到边框中;在耳机中实现新的触摸和手势控制;消除因使用加速计传感器进行触摸感应而产生的误触发。


家用电器方面,可以将触摸感应功能集成在家庭应用的厚固态材料中。


医疗和工业环境中,可以通过材料感知,或让设备使用特定的触摸输入材料(如乳胶手套)启动操作;在使用苛刻清洁剂的无菌环境中,用触摸感应表面替代机械按钮和滑块;使用外部测量系统监测储罐中的液位。


IME市场展望


IDTechEx预计,到2033年,集成电子产品的趋势将推动IME产品市场达到20亿美元。应用包括模内结构电子、功能性薄膜粘结、薄膜嵌件成型、3D电子、结构电子、电容式触摸传感器、可拉伸导电油墨、添加剂电子制造、汽车内饰、人机界面。


对于最大的汽车内饰目标市场,预计HMI将采用机械式和不同类型的电容开关。IME产品的制造方法包括有无集成SMD(表面安装器件)组件(如LED)两类。生产类似装饰性触敏界面的竞争方法包括功能性薄膜粘合和直接印刷。


芬兰电子注塑成型结构技术公司TactoTek是“IME with SMD”(内嵌SMD组件)的主要开发商,它已经存在了10年,从未盈利。从多轮融资看规模越来越大,公司越来越成熟,商业化前景越来越近。


总之,IME早期开发成本非常高,随着技术沿着经验曲线发展,预计2033年技术将会成熟,典型IME组件将实现价值捕获。


END

TechSugar 做你身边值得信赖的科技新媒体
评论
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 67浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 0浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 2浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 1浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 5浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 93浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 3浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 133浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 81浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦