《LIN总线协议合集》2-LIN总线物理层与LIN通信原理及帧结构

原创 智能汽车电子与软件 2023-07-11 16:59

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯
来源:晓超说
--lIN物理层--

大家好,本文章向大家介绍LIN总线的物理层。

LIN相对于CAN是一种低成本的通信总线。

出于成本原因与CAN相比,LIN通信线路为一根线。

另外,LIN通信可以不需要通信控制器,它的物理通信可以通过UART接口也称为SCI接口实现。

这种接口几乎集成在所有的微控制器中,所以LIN是基于UART帧结构的通信。

通过右图我们可以看到真实LIN报纹与UART帧的对应关系。

图片源VECTOR

我们可以看到UART帧包括8个数据位加一个起始位和一个停止位。

起始位是一个固定的逻辑0,停止位是一个固定的逻辑1。

那么在LIN总线中,逻辑0与逻辑1和物理电瓶如何对应呢?

我们继续学习LIN的信号规范。

在LIN规范中,规定显信位是一个逻辑0。

对于发送节点,总线物理电瓶小于20%VSUP时即为0。

对于接收节点,总线物理电瓶小于40%VSUP时为0。

隐性位是一个逻辑1。

对于发送节点,总线物理电瓶大于80%VSUP时为1。

对于接收节点,总线物理电瓶大于60%VSUP时即为1。

以上规定了接收节点和发送节点的信号特征。

在数据传输过程中,发送节点和接收节点还需要进行同步,来保证数据传输的准确性。

下面我们介绍Lin总线的同步。

在LIN总线中,有初始同步和重同步两种同步方式。

首先我们介绍初始同步。

LIN主节点/重节点在每次报文传输开始时需要建立同步。

为了降低成本,LIN总线没有时钟线。

重节点一般采用低成本的RC振荡器,并允许最大14%的时钟偏差。

当总线处于空闲时,总线状态为逻辑1。

数据开始传输时,由LIN的主节点实现初始同步。

主节点会向总线发送同步间隔场和同步场数据。

同步间隔场至少由13个位的显信位和1个位的隐信位组成。

同步场数据为LIN(x)55。

当重节点接收到主节点发送的同步场数据后,

重节点测量同步场第一个和最后一个下降严之间的时间,并将此时间除以8。

由此计算出主节点的位时间。

同时,根据计算结果调整自身的位速率,从而使主节点和重节点的位速率一致。

初始同步实现了所有重节点时钟和主节点时钟同步。

但是,在实际应用中,各节点时钟精度是存在差异的。

在数据传输的过程中,由于这种时钟精度的差异可能会造成未传输的偏差。

在LIN总线中还有一种同步方式,为重同步。

LIN帧格式是基于UART的通行格式。

发送节点和接收节点可利用UART帧其实位的下降严进行同步。

尽量避免因时钟精度的差异而导致的传输偏差。

这个阶段的同步称之为重同步。

以上内容就是关于LIN总线物理层的介绍。

--LIN通信原理及帧结构--

接下来向大家介绍LIN总线的通信原理以及LIN报文帧结构。
首先是LIN总先通信原理。

LIN网络采用的是主从结构。在这种主从结构中,有一个主节点和多个从节点。主节点包含主任务和从任务,从节点只包含从任务。
主任务根据在LIN调度表中确定的时间,负责向总先发送Header也称为"报头"。网络中的节点接收到Header后,从任务负责发送Response或接收Response或不发送也不接收。Response也称为"响应"。
Header和Response就组成了LIN报文。
我们这里可以看一个例子,来理解LIN总线的通信原理。
在这个例子中,网络有一个主节点和三个从节点。在LIN的调度表中定义了LIN报文的发送时间。
在T0发送Header1,在T1发送Header2,在T2发送Header3。那么,LIN的主节点就会按照定义好的时间去发送Header。

主节点在T0发送了Header1,接着从节点1发送了Response,从节点3接收了Response,从节点2不发送也不接收。

接着,主节点根据调度表发送了Header2、Header3,完成一个通信循环。由此我们可以看到,LIN报文的发送和接收时间都是预先确定并且可以预测的。
经过上面的介绍,我们了解到LIN报文是由Header和Response组成的。下面我们具体看一下LIN报文的帧结构。
首先是Header。Header是由主节点发送的。

header由sync break field的及同步间隔场、sync field的同步场和Protected Identifier及PID组成。同步间隔场由同步间隔和间隔界定符组成。同步间隔为至少持续13个位的显信位。

由于总线处于空闲时为隐信位,并且报文中除同步间隔场外的任何其他字段均符和UART真格式,也就不会发出大于9个位的显信位。
所以,同步间隔可以表示一帧报文的其实。间隔接订符至少包含一个隐信位。同步场为固定格式,数据为LINx55,用于初始同步。下面我们来详细看一下header中的PID。

PID由6位ID和P0,P1两位奇偶校验位组成。由于LIN的ID有6位,所以它的范围为0-63。在这些ID中,60和61及LINx3C和LINx3D用于诊断报文。

62和63为保留。P0,P1两位奇偶校验位组成,P0是ID0、ID1、ID2、ID4进行异或运算的结果。P1是ID1、ID3、ID4、ID5进行异或运算后取非的结果。
由此我们可以看出ID与PID是有一个确定的对应关系的。
我们接着看Response。

Response包含数据场和校验场。数据场长度为1-8个字节。校验场能够起到校验和保护传输内容的作用。我们具体来看一下。在另总线中有两种校验模型,分别是经典校验和增强校验。
那么它们有什么区别呢?经典校验范围为数据场内容,增强校验范围为PID和数据场内容。
在LIN规范1.1、1.2、1.3版本中没有增强校验。这里需要注意的是,对于ID为LINx3c和LINx3d的报纹,也就是整段报文,在所有版本的LIN规范中使用的都是经典校验。

请不吝点赞,关注并,转发,谢谢!

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论 (0)
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 82浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 156浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 91浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 146浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 389浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 211浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 71浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 314浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 236浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 190浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 265浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦