Linux内核代码60%都是驱动?驱动代码不会造成内核臃肿吗?

原创 嵌入式悦翔园 2023-07-11 11:40

关注星标公众号,第一时间获取信息

一、前言

今天逛知乎看到这么一个问题:为什么Linux内核代码60%都是驱动? 如果每支持新的设备就加入驱动,内核会不会变得越来越臃肿?

要先搞明白这个问题,我们首先要明确(区分)两个概念:内核代码内核,这是两个完全不一样的概念,我们通过 git clone 命令从网上拉取下来的代码叫做内核代码,如果增加新的设备内核代码确实会变得越来越臃肿,这点是肯定的,但是内核并不会变得臃肿,具体原因我们接下里会进行讨论。说了那么多内核代码,那内核是什么呢?为什么内核代码变多了内核却不会变大?

内核 是我们通过交叉编译之后真正烧录到板子里跑起来的代码,而交叉编译的时候,是有选择的进行编译,这里面有顶尖的大神们的智慧结晶,与你硬件相关的才编译,不相关的代码则不会被编译到内核里,所以不是说内核里提交了一个设备的驱动你的内核就会变大,这要看你的硬件有没有用到这个驱动。

二、Linux中避免内核臃肿的措施

我们上面知道了内核是经过我们交叉编译裁剪之后的代码,会有选择性的将对我们有用的代码编译进内核中,不需要的将被舍弃,这是Linux内核开发者智慧的结晶,也是保证内核不会变得臃肿的原因。那除了交叉编译之外还有没有其他的措施来保证内核不会变的越来越大呢?下面就给大家分享几个用来保证内核不臃肿的措施。

2.1 交叉编译及SDK包的裁剪

(这部分稍微有些啰嗦,主要为了让初学者更好的理解,老工程师可以直接跳过啦!)交叉编译是指在一种平台上编译生成在另一种不同平台上运行的可执行程序。在Linux中,常见的情况是在PC主机(Ubuntu系统)上编译生成适用于嵌入式设备或其他架构的目标程序。

通过上面的介绍我们已经知道了内核代码是会通过交叉编译来进行选择性的将对我们有用的代码编译进内核的,但是交叉编译到底是如何工作的呢?我们应该怎么去配置交叉编译以让我们的内核能过够在稳定运行的基础上尽量小巧呢?

做过嵌入式Linux的应该都清楚,我这里的介绍也主要针对嵌入式Linux来讲解,一般嵌入式Linux的交叉编译工具链都是由SDK包提供商(一般是芯片厂)提供,所以一般不需要我们进行编写和设计,只需要针对自己开发板的实际情况进行裁剪即可。

其实Linux代码到你烧录到板子中的内核代码是经过了下面的过程:

上面的图是我对于一套代码从Linux开源代码一步一步的被裁剪和适配后最终到达用户手中过程的理解,当然不同的厂商这个过程可能有所不同。

所以回到我们的问题,看完上面图片中的过程,你觉得Linux内核中提交了新设备的驱动代码会被烧录到最终烧录到板子中吗?

这里分几种情况来讨论:

  1. 如果这个新设备在该款芯片上完全不会用到,那么芯片厂提供的SDK包中就不会包含这个驱动;
  2. 如果这个新设备芯片是支持的,但是我这款开发板不支持,那么板厂就不会同步这个设备的驱动;
  3. 如果这个新设备在开发板上也是支持的,但是作为用户完全不会用到该设备,那么该设备的驱动也会被裁剪;

所以不是说Linux内核代码中新提交一个设备驱动,该设备驱动就会最终到开发板中,中间是会经过很多筛选的,只有真正对用户有用的代码才会被同步编译和烧录。

这里用户可能会有疑问,讲了半天代码包的裁剪,代码裁剪和交叉编译有什么关系呢?这里还要明确一点,代码的裁剪并不是你想象的直接把代码从代码包中删除了,更多时候是把代码从编译中删除掉,即该设备的驱动并不会被编译到内核中,但是源代码你还是可以看到的。

2.2 设备树

设备树的由来想必大家应该都有所耳闻:

ARM社区一贯充斥的大量垃圾代码导致Linus盛怒,因此社区在2011年到2012年进行了大量的工作。ARM Linux开始围绕Device Tree展开,Device Tree有自己的独立的语法,它的源文件为.dts,编译后得到.dtb,Bootloader在引导Linux内核的时候会将.dtb地址告知内核。之后内核会展开Device Tree并创建和注册相关的设备,因此arch/arm/mach-xxx和arch/arm/plat-xxx中大量的用于注册platform、I2C、SPI板级信息的代码被删除,而驱动也以新的方式和.dts中定义的设备结点进行匹配。

在设备树出现之前,内核代码中包含了大量与硬件设备相关的配置信息和初始化操作。随着硬件数量和多样性的增加,内核代码变得越来越复杂,难以管理和维护。设备树将硬件描述从内核代码中分离出来,使得内核代码更加清晰简洁,并且与具体硬件解耦。

使用设备树可以在运行时动态地配置硬件设备,而无需修改内核源代码。这点对于代码的调试非常方便,我们自需要重新编译设备树文件放到开发板中即可,而不用重新烧录整个内核。设备树中的硬件描述信息可以根据实际硬件配置进行自由组合和调整,从而达到更好的兼容性和灵活性。

2.3 模块化

Linux内核采用的是模块化设计,通过将功能划分为独立的模块,可以提高代码的可复用性和灵活性。内核模块是一段可以被动态加载到内核中并扩展其功能的代码。它相对独立于内核的其他部分,在需要时可以加载或卸载。

除了动态的加载将通用的功能封装成独立的模块,可以被多个子系统或驱动程序共享和复用,避免了重复编写相同的代码,提高了开发效率。如果看过I2C驱动的话大家应该清楚I2C驱动分为设备驱动和核心驱动,Linux内核已经将I2C驱动的公用代码封装到核心代码中了,其实I2C设备驱动代码只需要简单的调用I2C核心驱动中的接口即可,而不用从0开始完成一个I2C的驱动代码,这样代码的复用率会变高,内核驱动的代码量和代码复杂度也会变小。

2.4 硬件抽象层

硬件抽象层(Hardware Abstraction Layer,HAL)是一种软件层,用于将底层硬件设备的详细实现细节与上层应用程序隔离开来,提供一组统一的接口和功能,以简化对硬件的访问和操作。

硬件抽象层起到了在不同硬件平台之间建立标准化接口的作用,使得应用程序可以以相似的方式进行硬件访问和控制,而无需关心具体硬件的细节。通过使用硬件抽象层,开发人员可以更加方便地编写跨平台或可移植的应用程序,而不需要针对每个具体硬件设备进行独立的编程。

总的来说硬件抽象层提供了一种中间层的软件抽象,将底层硬件设备的具体实现细节与上层应用程序解耦,为开发人员提供简化的硬件访问接口和功能,以提高应用程序的可移植性和跨平台性。

三、嵌入式Linux的裁剪

其实本文默认说的Linux内核都是说的嵌入式Linux,因为对于像Ubuntu这种系统我也不太清楚。对于嵌入式Linux的裁剪我们上面已经介绍了整个代码包的流程,想必大家已经明白了我们烧录进去的内核是已经通过交叉编译精简过的,所以理论上来说烧录进去的已经是最精简的了。

其实内核裁剪不是我们想象的那么简单,只有道行深的工程师才敢进行内核的裁剪。Linux内核裁剪我也没有做过,所以这部分我留给大佬来补充吧!

四、总结

所以回归最开始的问题,Linux内核代码60%都是驱动?驱动代码不会造成内核臃肿吗?我认为答案是不会,如果你认为会变得越来越臃,可以一起交流一下哦!

推荐阅读



01

加入嵌入式交流群


02

嵌入式资源获取


03

STM32中断优先级详解


04

STM32下载程序新思路--使用串口下载程序


嵌入式悦翔园 专注于嵌入式技术,包括但不限于STM32、Arduino、51单片机、物联网、Linux等编程学习笔记,同时包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 169浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 120浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 215浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 90浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 150浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 92浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 216浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 218浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 168浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 180浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 186浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 133浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦