整流滤波电路

ittbank 2020-07-29 00:00



基础电路


一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。





变压电路

通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。电源变压器由初级绕组、次级绕组和铁芯组成。初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。通俗的说,电源变压器是一种电→磁→电转换器件。即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。次级接上负载时,电路闭合,次级电路有交变电流通过。变压器的电路图符号见图2-3-1。




整流电路


经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。

(1)半波整流电路
半波整流电路见图2-3-2。其中B1是电源变压器,D1是整流二极管,R1是负载。B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。在 2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。


设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:


整流二极管D1承受的反向峰值电压为:


由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。

(2)全波整流电路
由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。全波整流电路图见图2-3-6。相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。这个电路实质上是将两个半波整流电路组合到一起。在0~π期间B1次级上端为正下端为负,D1正向导通,电源电压加到R1上,R1两端的电压上端为正下端为负,其波形如图2-3-7(b)所示,其电流流向如图2-3-8所示;在π~2π期间B1次级上端为负下端为正,D2正向导通,电源电压加到R1上,R1两端的电压还是上端为正下端为负,其波形如图2-3-7(c)所示,其电流流向如图2-3-9所示。在2π~3π、3π~4π等后续周期中重复上述过程,这样电源正负两个半周的电压经过D1、D2整流后分别加到R1两端,R1上得到的电压总是上正下负,其波形如图2-3-7(d)所示。


 

设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:


整流二极管D1和D2承受的反向峰值电压为:


全波整流电路每个整流二极管上流过的电流只是负载电流的一半,比半波整流小一倍。

(3)桥式整流电路
由于全波整流电路需要特制的变压器,制作起来比较麻烦,于是出现了一种桥式整流电路。这种整流电路使用普通的变压器,但是比全波整流多用了两个整流二极管。由于四个整流二极管连接成电桥形式,所以称这种整流电路为桥式整流电路。


由图2-3-13可以看出在电源正半周时,B1次级上端为正,下端为负,整流二极管D4和D2导通,电流由变压器B1次级上端经过D4、R1、D2回到变压器B1次级下端;由图2-3-14可以看出在电源负半周时,B1次级下端为正,上端为负,整流二极管D1和D3导通,电流由变压器B1次级下端经过 D1、R1、D3回到变压器B1次级上端。R1两端的电压始终是上正下负,其波形与全波整流时一致。

设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:


整流二极管D1和D2承受的反向峰值电压为:


桥式整流电路每个整流二极管上流过的电流是负载电流的一半,与全波整流相同。

通常情况下桥式整流电路都简化成图2-3-17的形式。


(4)倍压整流电路
前面介绍的三种整流电路输出电压都小于输入交流电压的有效值,如果需要输出电压大于输入交流电压有效值时可以采用倍压电路,见图2-3-18。由图 2-3-19可知,在电源的正半周,变压器B1次级上端为正下端为负,D1导通,D2截止,C1通过D1充电,充电后C1两端电压接近B1次级电压峰值,方向为左端正右端负;由图2-3-20可知,在电源的负半周,变压器B1次级上端为负下端为正,D1截止,D2导通,C2通过D1充电,充电后C2两端电压接近C1两端电压与B1次级电压峰值之和,方向为下端正上端负。由于负载R1与C1并联,当R1足够大时,R1两端的电压即为接近2倍B1次级电压。


二倍压整流电路还有另外一种形式的画法,见图2-3-21,其原理与图2-3-18完全一致,只是表现形式不一样。


二倍压电路还可以很容易的扩展为n倍压电路,具体电路见图2-3-22。





滤波电路

交流电经过整流后得到的是脉动直流,这样的直流电源由于所含交流纹波很大,不能直接用作电子电路的电源。滤波电路可以大大降低这种交流纹波成份,让整流后的电压波形变得比较平滑。

(1)电容滤波电路
电容滤波电路图见图2-3-23,电容滤波电路是利用电容的充放电原理达到滤波的作用。在脉动直流波形的上升段,电容C1充电,由于充电时间常数很小,所以充电速度很快;在脉动直流波形的下降段,电容C1放电,由于放电时间常数很大,所以放电速度很慢。在C1还没有完全放电时再次开始进行充电。这样通过电容C1的反复充放电实现了滤波作用。滤波电容C1两端的电压波形见图2-3-24(b)。


选择滤波电容时需要满足下式的条件:


(2)电感滤波电路
电感滤波电路图见图2-3-26。电感滤波电路是利用电感对脉动直流的反向电动势来达到滤波的作用,电感量越大滤波效果越好。电感滤波电路带负载能力比较好,多用于负载电流很大的场合。


(3)RC滤波电路
使用两个电容和一个电阻组成RC滤波电路,又称π型RC滤波电路。见图2-3-27所示。这种滤波电路由于增加了一个电阻R1,使交流纹波都分担在R1上。R1和C2越大滤波效果越好,但R1过大又会造成压降过大,减小了输出电压。一般R1应远小于R2。


(4)LC滤波电路
与RC滤波电路相对的还有一种LC滤波电路,这种滤波电路综合了电容滤波电路纹波小和电感滤波电路带负载能力强的优点。其电路图见图2-3-28。


(5)有源滤波电路
当对滤波效果要求较高时,可以通过增加滤波电容的容量来提高滤波效果。但是受电容体积限制,又不可能无限制增大滤波电容的容量,这时可以使用有源滤波电路。其电路形式见图2-3-29,其中电阻R1是三极管T1的基极偏流电阻,电容C1是三极管T1的基极滤波电容,电阻R2是负载。这个电路实际上是通过三极管T1的放大作用,将C1的容量放大β倍,即相当于接入一个(β+1)C1的电容进行滤波。


图2-3-29中,C1可选择几十微法到几百微法;R1可选择几百欧到几千欧,具体取值可根据T1的β值确定,β值高,R可取值稍大,只要保证T1的集电极-发射极电压(UCE)大于1.5V即可。T1选择时要注意耗散功率PCM必须大于UCEI,如果工作时发热较大则需要增加散热片。
有源滤波电路属于二次滤波电路,前级应有电容滤波等滤波电路,否则无法正常工作。





整流滤波电路总结

(1)常用整流电路性能对照
电路名称
每个原件承受的最大反向电压
每个原件的平均电流
变压器次级电压有效值
变压器次级
电流有效值
半波整流
3.14U
I
2.221U+e
1.571I
全波整流
3.14U
0.5I
1.111U+e
0.786I
桥式整流
1.571U
0.5I
1.111U+2e
1.111I
注:U为负载两端电压值;I为负载上电流值;e为整流二极管压降,一般取0.7V。

(2)常用无源滤波电路性能对照
电路名称
滤波效果
输出电压
输出电流
应用特点
电容滤波
稍差
稍小
结构简单。由于大容量滤波电容的广泛使用,克服了滤波效果稍差的缺点,广泛用于各类电源电路。
电感滤波
较差
电源电路中较少使用。
RC滤波
较好
较高
常用于电子管收音机电路和各种高低频退耦电路。
LC滤波
很好
稍小
电源电路中较少使用。

(3)电容滤波电路输出电流大小与滤波电容量的关系
输出电流
(A)
2
1
0.5~1
0.1~0.5
0.05~1
0.05
电容量
(μF)
4000
2000
1000
500
200~500
200

(4)常用整流滤波电路计算表
电路名称
(均使用电容滤波)
输入交流电压(有效值)
负载开路时输出电压
带负载时输出电压(估计值)
每个二极管的最大反向电压
每个二极管通过的电流
需要使用的二极管数量
半波整流
E
1.414E
E
2.828E
I
1
全波整流
2E
1.414E
1.2E
2.828E
0.5I
2
桥式整流
E
1.414E
1.2E
1.414E
0.5I
4
二倍压
E
2.828E
2E
2.828E
I
2



ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论
  • 在2025年世界移动通信大会(MWC 2025)期间,紫光展锐携手美格智能正式推出了基于紫光展锐V620平台的第二代5G Sub6G R16模组SRM812,以超高性价比方案,全面赋能合作伙伴,加速5G规模化应用在各垂直领域的全面落地。展锐芯赋能,全面支持R16关键特性SRM812模组基于紫光展锐推出的V620平台设计,V620是业界首款全面支持R16的5G宽带物联网芯片平台,具备强劲的射频能力和全网通特性。得益于此,SRM812成为业界首批全面支持5G R16宽带物联网特性的芯片平台。SRM8
    紫光展锐 2025-03-04 19:55 80浏览
  • 在2024年的科技征程中,具身智能的发展已成为全球关注的焦点。从实验室到现实应用,这一领域正以前所未有的速度推进,改写着人类与机器的互动边界。这一年,我们见证了具身智能技术的突破与变革,它不仅落地各行各业,带来新的机遇,更在深刻影响着我们的生活方式和思维方式。随着相关技术的飞速发展,具身智能不再仅仅是一个技术概念,更像是一把神奇的钥匙。身后的众多行业,无论愿意与否,都像是被卷入一场伟大变革浪潮中的船只,注定要被这股汹涌的力量重塑航向。01为什么是具身智能?为什么在中国?最近,中国具身智能行业的进
    艾迈斯欧司朗 2025-02-28 15:45 372浏览
  • 中小企业(SME)对全球经济的贡献日益显著,不仅是发展中国家的经济支柱,通常还是其经济快速增长的关键部分。中小企业的其他关键作用还包括促进创业和创新,从而保证竞争力。从这一点来说,中小企业助力了许多大公司,并对世界经济做出重大贡献。本章将介绍中小企业的定义和经济份额,分析其特点以及它们与大型企业的区别。中小企业的定义任何组织在制订计划和策略时,最重要的都是了解业务的性质和类型。全球各企业的分类主要基于它们的体量,例如固定资产、产值、资金和员工数量。从大的分类来讲,大公司被划归为一种类型,而所有其
    优思学院 2025-03-04 11:07 80浏览
  • 在现代各种工业设备的复杂电路中,栅极驱动芯片虽不常被大众提及,却扮演着至关重要的角色。栅极驱动芯片是低压控制器和高压电路之间的缓冲电路,主要用于放大控制器的控制信号,从而令功率器件实现更快速高效的导通和关断,是保障电子设备稳定、高效运行的核心元件之一。驱动芯片的类型(按结构划分)电力电子应用基于功率器件技术,而无论是MOSFET、IGBT,还是SiC MOSFET等功率器件都需要相应的栅极驱动芯片(Gate Driver IC)。选择一款合适的驱动芯片,不仅可以简化相应电气系统的设计复杂度,还可
    华普微HOPERF 2025-03-04 14:40 80浏览
  • 1,微软下载免费Visual Studio Code2,安装C/C++插件,如果无法直接点击下载, 可以选择手动install from VSIX:ms-vscode.cpptools-1.23.6@win32-x64.vsix3,安装C/C++编译器MniGW (MinGW在 Windows 环境下提供类似于 Unix/Linux 环境下的开发工具,使开发者能够轻松地在 Windows 上编写和编译 C、C++ 等程序.)4,C/C++插件扩展设置中添加Include Path 5,
    黎查 2025-02-28 14:39 211浏览
  • 文/Leon编辑/cc孙聪颖在中国制造转向“智造”的过程中,一批80、90后企业创始人闪亮登场,用互联网思维进行创新,在全球市场取得了傲人的成绩,如大疆汪滔、宇树科技王兴兴、影石Insta360刘靖康,都是各自领域的佼佼者。在引领全球市场后,独角兽企业的下一步自然是上市。据悉,中国证监会于2025年2月26日正式批复影石Insta360创新科技股份有限公司(以下简称影石Insta360)的IPO申请,拟在上交所科创板上市,中信证券为保荐机构,拟募集资金4.64亿元。影石Insta360主要从事手
    华尔街科技眼 2025-03-03 18:40 160浏览
  • 压力传感器是指能感受压力信号,并能按照一定的规律将压力信号转换成可用的电信号的器件或装置。压力传感器通常由压力敏感元件和信号处理单元组成,按不同测压方法,压力传感器可分为表压传感器、差压传感器和绝压传感器;按不同测压原理,压力传感器又可分为常见的压阻式压力传感器、电容式压力传感器、扩散硅压力传感器、蓝宝石压力传感器与陶瓷压力传感器等。作为工业自动化与智能化的关键器件,压力传感器在各类工业设备中扮演着不可或缺的角色,其通过精确感知和转换物理压力信号,为工业物联网(IIoT)构建起了高效精确的“压力
    华普微HOPERF 2025-03-03 10:19 188浏览
  • 2020年,世界经济论坛发布了《将来工作报告》,预言了人工智能 (AI)、机器人和自动化将在五年内对劳动力市场带来反天性的变化。最震撼人心的预测是:85亿个工位将消失,97亿个新工位将被创造。这个信息给我们提出了一些骂烈的疑问:AI究竟会消灭哪些工作?管理者的规划依然重要吗?AI会代替我们的管理之路吗?AI不会替代管理者,会进一步增强他们随着AI在机器学习、自然语言处理和预测分析方面的进步,许多人对AI接管事务表示担心。但研究显示,大多数情况下,AI将作为工具与管理者协同完成任务,而不是替换他们
    优思学院 2025-03-01 12:22 183浏览
  • 在当今数据驱动的世界,内存解决方案需要的不仅仅是原始性能。贞光科技代理的紫光国芯全系列存储产品提供定制化解决方案,解决各行业面临的独特挑战,同时确保可靠性、兼容性和面向未来的创新。打破“唯性能论”,迎接多元化存储需求一直以来,高性能似乎成了衡量存储产品的唯一标准。 没错,速度快、效率高,固然重要。 但话说回来, 难道所有应用场景,都对性能有着“变态”级的需求吗? 答案显然是否定的。 就像穿鞋一样,合脚才是最重要的, 一味追求“跑得快”, 反而容易磨脚,甚至崴脚!在实际应用中,各行各业对存储的需求
    贞光科技 2025-03-03 17:05 106浏览
  • 一、VSM的基本原理震动样品磁强计(Vibrating Sample Magnetometer,简称VSM)是一种灵敏且高效的磁性测量仪器。其基本工作原理是利用震动样品在探测线圈中引起的变化磁场来产生感应电压,这个感应电压与样品的磁矩成正比。因此,通过测量这个感应电压,我们就能够精确地确定样品的磁矩。在VSM中,被测量的样品通常被固定在一个震动头上,并以一定的频率和振幅震动。这种震动在探测线圈中引起了变化的磁通量,从而产生了一个交流电信号。这个信号的幅度和样品的磁矩有着直接的关系。因此,通过仔细
    锦正茂科技 2025-02-28 13:30 157浏览
  • DeepSeek的风还吹到了TV圈。去年,人工智能领域迎来了重大突破,然而对大多数人而言,它依旧是个颇为模糊的概念。即便是如ChatGPT这样的产品,给人最直接的感受也仅仅是一个相较于Siri更为智能的语音交互工具。直至今年,DeepSeek的惊艳亮相,人们真正感受到了生成式人工智能在实际应用中的价值。在这股浪潮的推动下,电视厂商们也纷纷跟上了脚步。2月11日,海信电视宣布正式接入DeepSeek,并支持满血R1和V3版本自由切换,成为行业首个搭载深度思考智能体的电视品牌。长虹电视紧随其后,宣布
    刘旷 2025-03-03 09:55 250浏览
  • 振动样品磁强计是一种用于测量材料磁性的精密仪器,广泛应用于科研、工业检测等领域。然而,其测量准确度会受到多种因素的影响,下面我们将逐一分析这些因素。一、温度因素温度是影响振动样品磁强计测量准确度的重要因素之一。随着温度的变化,材料的磁性也会发生变化,从而影响测量结果的准确性。因此,在进行磁性测量时,应确保恒温环境,以减少温度波动对测量结果的影响。二、样品制备样品的制备过程同样会影响振动样品磁强计的测量准确度。样品的形状、尺寸和表面处理等因素都会对测量结果产生影响。为了确保测量准确度,应严格按照规
    锦正茂科技 2025-02-28 14:05 218浏览
  • 2025年世界移动通信大会(MWC 2025)期间,紫光展锐联合移远通信,正式发布了全面支持5G R16特性的模组RG620UA-EU,以强大的灵活性和便捷性赋能产业。展锐芯加持,关键性能优异RG620UA-EU模组基于紫光展锐V620平台开发,搭载4核Arm®Cortex®-A55 CPU,符合3GPP R16标准,在传输速率、计算能力、R16关键特性等方面表现优异。该模组配备了丰富的功能接口,包括USXGMII、PCIe3.0、USB3.1、SDIO3.0、UART、SPI、I2S、I2C、
    紫光展锐 2025-03-04 19:54 80浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦