完了

C语言与CPP编程 2023-07-09 09:00

击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号

干货福利,第一时间送达!

最近有小伙伴说没有收到当天的文章推送,这是因为微信改了推送机制,有一部分小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了,建议大家加个星标⭐️,就能第一时间收到推送。

小伙伴们大家好,我是飞宇。

前段时间润去美国的师兄开了一门C/C++的课程,友情帮忙宣传一下,感兴趣的可以看看。

国外大佬将通过分析,证明Python 3.14 将比 C++更快。
Python 是数据科学 (DS) 和机器学习 (ML) 中最常用的脚本语言之一。根据“PopularitY of Programming Languages”,Python 是 Google 上搜索次数最多的语言。

除了作为将各种 DS/ML 解决方案连接在一起的出色胶水语言之外,它还有许多库可以对数据进行方便处理。

我们以前也发过文章做过一些3.11 版的测试。因为这个版本的主要特点是速度显着提高。

在这篇文章中,是国外的一个大佬进行的数据分析,通过他的分析可以证明Python 3.14 将比 C++更快。

本文的方法是:使用蒙特卡洛方法估计 Pi。

这个算法的想法很简单,但是在大学的一些数学课程中都会有介绍:有一个大小为 2r 的正方形,在这个正方形中我们拟合一个半径为 r 的圆。采用一个在平面上生成数字的随机数生成器:<-r, r>, <-r, r>。圆上的点与正方形上的点之间的比率(读取:所有点)是面积比的近似值,我们可以用它来近似 Pi。公式如下:


将实际估计与测试脚本分开,这样就可以重复测试并取平均值。这里还是用 Argparse 对脚本进行了参数化,Argparse 是一个用于解析来自命令行界面 (CLI) 的参数的标准库。Python 代码如下所示:

 def estimate_pi(    n_points: int,    show_estimate: bool, ) -> None:    """    Simple Monte Carlo Pi estimation calculation.    Parameters    ----------    n_points        number of random numbers used to for estimation.    show_estimate        if True, will show the estimation of Pi, otherwise        will not output anything.    """    within_circle = 0     for _ in range(n_points):        x, y = (random.uniform(-1, 1) for v in range(2))        radius_squared = x**2 + y**2         if radius_squared <= 1:            within_circle += 1     pi_estimate = 4 * within_circle / n_points     if not show_estimate:        print("Final Estimation of Pi=", pi_estimate)   def run_test(    n_points: int,    n_repeats: int,    only_time: bool, ) -> None:    """    Perform the tests and measure required time.    Parameters    ----------    n_points        number of random numbers used to for estimation.    n_repeats        number of times the test is repeated.    only_time        if True will only print the time, otherwise        will also show the Pi estimate and a neat formatted        time.    """    start_time = time.time()     for _ in range(n_repeats):        estimate_pi(n_points, only_time)     if only_time:        print(f"{(time.time() - start_time)/n_repeats:.4f}")    else:        print(            f"Estimating pi took {(time.time() - start_time)/n_repeats:.4f} seconds per run."        )

测试多个 Python 版本的最简单方法是使用 Docker。 要使用 Docker需要安装它。在 Linux 和 Mac 中它相对容易,在 Windows 中稍微复杂一些。虽然Docker中运行会有一些效率的降低,但是测试都在Docker进行,所以误差就可以忽略了。要在容器化 Python 环境中运行本地脚本,可以使用下面命令:

docker run -it --rm \ -v $PWD/your_script.py:/your_script.py \ python:3.11-rc-slim \ python /yourscript.py

我们也是用python脚本来自动化这个过程:

def test_version(image: str) -> float: """ Run single_test on Python Docker image. Parameter --------- image full name of the the docker hub Python image. Returns ------- run_time runtime in seconds per test loop. """ output = subprocess.run([ 'docker', 'run', '-it', '--rm', '-v', f'{cwd}/{SCRIPT}:/{SCRIPT}', image, 'python', f'/{SCRIPT}', '--n_points', str(N_POINTS), '--n_repeats', str(N_REPEATS), '--only-time', ], capture_output=True, text=True, ) avg_time = float(output.stdout.strip()) return avg_time # Get test time for current Python version base_time = test_version(NEW_IMAGE['image']) print(f"The new {NEW_IMAGE['name']} took {base_time} seconds per run.\n") # Compare to previous Python versions for item in TEST_IMAGES: ttime = test_version(item['image']) print( f"{item['name']} took {ttime} seconds per run." f"({NEW_IMAGE['name']} is {(ttime / base_time) - 1:.1%} faster)" )

这些测试时的结果具体取决于CPU 。以下是7 个主要 Python 版本的结果:

The new Python 3.11 took 6.4605 seconds per run. Python 3.5 took 11.3014 seconds.(Python 3.11 is 74.9% faster) Python 3.6 took 11.4332 seconds.(Python 3.11 is 77.0% faster) Python 3.7 took 10.7465 seconds.(Python 3.11 is 66.3% faster) Python 3.8 took 10.6904 seconds.(Python 3.11 is 65.5% faster) Python 3.9 took 10.9537 seconds.(Python 3.11 is 69.5% faster) Python 3.10 took 8.8467 seconds.(Python 3.11 is 36.9% faster)

Python 3.11 的基准测试平均耗时 6.46 秒。与之前的版本 (3.10) 相比,这几乎快了 37%。3.9 版和 3.10 版之间的差异大致相同,在下图中我们进行这个数据的可视化:


在谈论速度时,人们总是说:如果你想要速度,为什么不使用 C。

  C 比 Python 快得多!

这里使用了 GNU C++,因为它带有一个不错的时间测量库(chrono),我们的c++代码如下:

#include #include #include #include #define N_POINTS 10000000 #define N_REPEATS 10 float estimate_pi(int n_points) { double x, y, radius_squared, pi; int within_circle=0; for (int i=0; i < n_points; i++) { x = (double)rand() / RAND_MAX; y = (double)rand() / RAND_MAX; radius_squared = x*x + y*y; if (radius_squared <= 1) within_circle++; } pi=(double)within_circle/N_POINTS * 4; return pi; } int main() { double avg_time = 0; srand(42); for (int i=0; i < N_REPEATS; i++) { auto begin = std::chrono::high_resolution_clock::now(); double pi = estimate_pi(N_POINTS); auto end = std::chrono::high_resolution_clock::now(); auto elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin); avg_time += elapsed.count() * 1e-9; printf("Pi is approximately %g and took %.5f seconds to calculate.\n", pi, elapsed.count() * 1e-9); } printf("\nEach loop took on average %.5f seconds to calculate.\n", avg_time / N_REPEATS); }

C++ 是一种编译语言,我们需要先编译源代码才能使用它:

g++ -o pi_estimate pi_estimate.c

编译后,运行构建的可执行文件。输出如下:

Pi is approximately 3.14227 and took 0.25728 seconds to calculate. Pi is approximately 3.14164 and took 0.25558 seconds to calculate. Pi is approximately 3.1423 and took 0.25740 seconds to calculate. Pi is approximately 3.14108 and took 0.25737 seconds to calculate. Pi is approximately 3.14261 and took 0.25664 seconds to calculate. Each loop took on average 0.25685 seconds to calculate.

相同循环只需要 0.257 秒。让我们在之前的图中将其添加为一条线,如下所示。


我们清楚地看到了C++很快,但是Python 开发人员提到,接下来的几个版本将会显着提高速度,在这个假设的前提下,我们的绝活就要来了,请大家理清思路注意观看。

我们以假设这个速度会保持下去(是的,超级安全的假设🙃)。在这种势头固定的情况下,Python 何时会超越 C++ 呢。我们当然可以使用外推法来预测下几个 Python 版本的循环时间,见下图。


看到了吧,经过我们的严密的分析和预测,如果保持这个速度,Python 3.14 将比 C++ 更快。确切地说,运行完我们测试的时间为 -0.232 秒,它会在我们想要进行计算之前完成(太棒了🤣)。

下面就是免责声明的时间:

python 3.11的速度的有了很大的进步,虽然与编译语言相比还差了很多但是开发团队还在速度优化这个方向努力,所以希望Python的运行速度还有更大的进步。以上只是大佬开的一个玩笑,但上面的代码都可以在下面的链接找到,所以我们的结论还是有根据的😏

https://github.com/dennisbakhuis/python3.11_speedtest
作者:Denn·is Bakhuis

编辑:黄继彦
EOF

你好,我是飞宇,本硕均于某中流985 CS就读,先后于百度搜索以及字节跳动电商等部门担任Linux C/C++后端研发工程师。

同时,我也是知乎博主@韩飞宇,日常分享C/C++、计算机学习经验、工作体会,欢迎点击此处查看我以前的学习笔记&经验&分享的资源。

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会

加个微信,打开另一扇窗

C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 44浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦