MEMS压电超声换能器CMUT&PMUT以及生产工艺

原创 秦岭农民 2023-07-07 20:23

MEMS 压电超声换能器

1、声波与超声波

声波:物体振动时激励着它周围的空气质点振动,由于空气具有可压缩性,在质点的相互作用下,振动物体四周的空气就交替地产生压缩与膨胀,并且逐渐向外传播,从而形成声波。声波传播方式不是物质的移动,而是能量的传播。也就是说质点并不随声波向前扩散,而仅在其原来的平衡位置附近振动,靠质点之间的相互作用影响到邻近的质点振动,因此,振动得以向四周传播,形成波动。

纵波:质点振动方向平行于传播方向的波,称为纵波。

横波:质点振动方向垂直于波传播方向的波,称为横波。

声波在空气中传播时只能发生压缩与膨胀,空气质点的振动方向与声波的传播方向是一致的,所以空气中的声波是纵波。声波在液体中传播一般也为纵波,但在固体中传播则既有纵波又有横波。

超声波:频率超过人类耳朵可以听到的最高阈值(20kHz)的声波。人类的听觉频率范围一般在20Hz到20kHz之间,低于20Hz的声波叫做次声波(Infrasound),声波的频率范围一般认为在15Hz到1THz之间(这个T和硬盘的T是一样的,10的12次方)。1GHz以上的一般叫做Hypersound,也称作“微波声”或者“量子声”,主要是声波更多呈现粒子特性,波的特性不明显。所以波粒二象性不只存在于光波领域,声波领域同样存在。

2、超声波的产生

超声换能器(ultrasonic transducer,UT)是即可以用来发射又可以用来接收超声波的换能原件。工作在发射模式,电势能通过静电力或者逆压电效应转化为换能器的振动从而产生辐射声压;工作在接收模式,声压作用在换能器表面使其振动,换能器再将振动转换成电压。

从不同工作原理与加工方式的角度来进行分类,可以将超声换能器分为压电陶瓷超声换能器(Piezoelectric-ceramic ultrasonic transducers, PUT)、电容式微机械超声换能器(Capacitive micro-machined ultrasonic transducers, CMUT)、压电微机械超声换能器(Piezoelectric Micro-machined ultrasonic transducers, PMUT)图1分别为PUT、CMUT、PMUT三种换能器的结构示意图。不同工作原理与加工方式的超声换能器在尺寸大小、工作频率、工作带宽等方向分别有不同的特性,这也在一定程度上影响不同类型超声换能器在高频工作频段上的应用

         

1 PUT、CMUT与PMUT三种换能器结构示意图

3、CMUT电容式微机械超声换能器

CMUT首先由M.I.Haller提出。CMUT 换能器是由多层结构和多层材料构成。CMUT电容单元结构如图 2 所示,从上到下依次为金属铝上电极氧化硅电气隔离层、绝缘体上硅(silicon on insulator,SOI)晶圆顶层硅制成的振动膜、在氧化硅上蚀刻的真空腔、氧化硅隔离层、硅衬底和金属铝底电极。在外界大气压强的作用下,薄膜向下凹陷。CMUT 在工作状态下需要在上下电极之间施加直流偏置电压,通过提高薄膜应力来提高灵敏度。

2 CMUT 换能器单元结构

发射状态下,在上下电极板之间施加直流偏置,通过交流电压和直流偏置电压的叠加,使薄膜随着交流信号产生简谐振动,发生电能向机械能的转换,产生超声波;

3 超声发射原理图

接收状态下,在上下电极板之间施加直流偏置,振动薄膜在受到超声波的声压作用而发生振动,引起电容值的改变,通过检测电容变化从而实现对超声波的检测,实现机械能向电能的转换。

4 超声接收原理图

         

3.1 CMUT 换能器制备工艺过程

根据确定的 CMUT 参数,对换能器进行制备。

1)准备氧化层厚度为 500nm 的氧化片(低阻硅) 和器件层厚度 2μm的 SOI 晶圆,器件层的2μm 薄膜将作为换能器单元的振动薄膜;如图5

5 备片,氧化片和 SOI

2) 通过反应离子刻蚀(reactive ion-etching,RIE),在氧化硅氧化层表面刻蚀 300 nm 的空腔,用 CMUT 换能器的真空腔隙;如图6

图6 RIE 刻蚀空腔

3)在真空环境下对刻蚀有空腔的氧化片和 SOI 晶圆器件层进行硅—硅键合,随即在高温退火炉中进行退火处理,使得晶圆间的范德华力作用转变为化学键作用;如图7

7 -硅键合

4)将键合片的埋氧层以上部分去除,用 BOE 漂洗掉顶层和底层的氧化硅,为背面金属附着做准备;如图8

8减薄、BOE 漂洗氧化层

5)利用等离子增强化学气相淀(plasma-enhanced chemical vapor deposition,PECVD)在振膜上表面生长 200 nm 的氧化硅作为振膜与上电极金属的电气隔离;如图9

9 PECVD 沉积氧化硅

6)通过磁控溅射仪器在正反面溅射500nm 的金属铝,并对上表面金属通过磷酸腐蚀进行图形化,最后在真空退火炉中进行退火处理,用于修复晶格损伤并形成良好的欧姆接触;如图10

10 做金属上下电极,退火

完成以上工艺后得到的芯片如下图11

图11 CMUT芯片效果图

         

4 PMUT 换能器制备工艺过程

MEMS 电式超声换能器(Piezoelectric Micromachined Ultrasonic Transducer,PMUT)基于压电材料的压电效应和逆压电效应是可以由单个器件完成声压的测量以及声压信号或声能量输出的超声换能器。

典型 PMUT 为悬膜式结构,由顶部电极、压电薄膜、 底部电极和硅衬底构成。绝缘层(通常为二氧化硅)一方面作为反面刻蚀的停止 层起到释放单元的作用,一方面又作为底部电极和基底(通常为硅)之间绝缘层 起到减小寄生电容的作用。顶部电极、压电薄膜、底部电极与绝缘层共同组成悬膜结构,由附着层黏附在硅支撑层上。如图12所示

图12 PMUT超声换能器结构与其器件图 (a)pMUT用质量-弹簧-阻尼系统来描述(b)

当压电式超声换能器所处声场环境中,换能器中压电材料结构的两端由于受到声场声压力作用而产生电荷,通过测量电路获取换能器受声场作用而产生的电荷情况,即可通过二者关系获取所在声场声强;在压电式超声换能器的压电材料结构上按照一定规律施加交变电场,通过逆压电效应则可使压电材料发生相应的交替机械形变,带动换能器发生机械振动,进而产生声场向外辐射声能量。

图13 PMUT 振动模式

MEMS 微纳器件加工工艺包括磁控溅射、光刻、刻蚀(干法刻蚀/湿法刻蚀)、剥离、背部工艺以及清洗等工艺步骤,以完成 PMUT 器件的各功能层形成及图形化。Design and Fabrication of a Piezoelectric MicromachinedUltrasonic Transducer Array Based on Ceramic PZT 文献中描述了一种 pMUT制造的工艺流程如图14所示。

首先用SU-8光刻胶将初始厚度为660µm的PZT- 5h陶瓷片与硅片粘合图14(b然后,将结合的PZT层研磨抛光至100µm图14(c在抛光后的PZT表面溅射100 nm的金层作为底电极图14(d之后,在SOI晶圆上旋转涂覆一层薄薄的PermiNex。然后将SOI晶片粘合在抛光后的PZT晶片上 图14(e为了避免PermiNex层出现空隙,实现牢固的粘接,需要对粘接过程进行良好的控制。粘合后,PZT层从硅/SU-8侧进一步抛光,首先去除硅和SU-8,然后通过化学机械抛光减薄至5µm图14(f);其次,采用4.5% HNO3 /4.5%BOE/91% H2O湿法蚀刻,在PZT层上形成通向底部电极的通孔图14g);然后通过溅射和升空形成顶部电极层图14h);在那之后,空腔区域背面的光刻区域双面对齐14(i;进行背面的硅被DRIE蚀刻,直到埋藏的氧化层暴露出来14(j最后,埋藏的氧化层被水蒸气HF除去,形成pMUT的薄膜14(k

         

秦岭农民 欢迎关注半导体,光学,传感器,雷达,硅光耦合,激光器等封装相关.需求请留言。谢谢
评论 (0)
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 104浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 85浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 130浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 114浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 82浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 51浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 68浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 86浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 87浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 114浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 61浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 76浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 140浏览
我要评论
0
6
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦