CAN与CANFD在传输速率、数据域长度与帧的差异

谈思汽车 2023-07-06 12:07

 智能汽车安全新媒体 



1

传输速率不同


CAN的传输速率:一般的工程中比较常用的为500K每秒的通讯速率。这个速率在实际测试的时候也是非常可靠的。CAN总线上任意两个节点的最大传输距离与其位速率有关。最大通信距离指的是同一条总线上两个节点之间的距离。从下面图中,可以看到速率越低通讯距离就越远,也就是说CAN总线的通讯距离和波特率成反比。CAN最大传输速率为1Mbps

CAN总线的通讯距离和波特率的关系图

CANFD的传输速率:CAN-FD 采用了两种位速率:从控制场中的 BRS 位到 ACK 场之前(含 CRC 分界符)为可变速率,其余部分为原 CAN 总线用的速率。两种速率各有一套位时间定义寄存器,它们除了采用不同的位时间单位 TQ 外,位时间各段的分配比例也可不同。
因此,对于 CAN FD而言,是在 CAN 的基础上增加了一个数据域的传输速率,数据传输速率要大于等于原 CAN 总线用的速率。也就是说 CAN FD 支持两种传输速率,两种速率可以保持一致,也可以不保持一致。速率可变,仲裁比特率最高1Mbps,数据比特率最高8Mbps。

标准帧对比


扩展帧对比


2

数据域长度不同


CAN的数据域长度,一帧数据最长8字节。CAN FD数据域长度,一帧数据最长64字节。


传统CAN报文与CANFD报文的DLC长度区别如下所示:

传统CAN报文与CANFD报文的最大区别有2点
1、CANFD可以传输更多的数据
2、CANFD报文在传输中由2种传输速率完成传输,一种是标称的CAN总线速率(用于传输非数据域的字段),另一种是数据域传输速度(用于传输数据域的字段)。

3、帧格式不同

在CAN总线上传输的信息称为报文,当总线空闲时任何连接的单元都可以开始发送新的报文。CAN通信是通过以下5种类型的帧进行的:数据帧 、遥控帧 、错误帧 、过载帧 、帧间隔。

can总线数据帧格式

can遥控帧


3.1

CAN Framing 帧格式

标准帧
标准帧(11 ID + 0~8 bytes data)
标准远程帧(11 ID + 0 byte data)
扩展帧
扩展帧(29 ID + 0~8 bytes data)
扩展远程帧(29 ID + 0 byte data)


SOF:0(显性电位为 0,隐性电位为 1,总线空闲默认为 1),帧起始,接收节点收到帧起始会和总线时钟进行同步(硬同步、重同步,这里是硬同步)。
仲裁字段
ID:高位在前
RTR:远程帧请求,远程帧为 0,表示是数据帧,否则是远程帧。远程帧表明接受该帧的节点即不主动发送数据,当他收到远程帧时,才开始发送数据,减少占用 CAN 的通信。
控制字段
IDE:表示是否是扩展帧,IDE 为 1 是扩展帧
r:保留位
DLC:数据长度,合理范围是 0 - 8,超过则表示 8 字节
数据字段
校验字段
CRC:15位校验位
DEL(delimter):分隔符,无意义,为 1
确认字段
ACK:发送节点,该位都为 1,接受节点 CRC 正确则在 ACK 位时,该位置置为 0,否则还是 1。如果发送节点回读 ACK 是 0,继续发送,否则停止发送,下一次发送一个错误帧。(下一次发送错误帧不太理解)
DEL
EOF + ITM:结束字段 + 帧间隔

扩展帧结构

位填充:出现了五个相同的位(包括填充位),就在下一个位置填充一个相反的位。
范围从 SOF 开始一直到 CRC。
帧错误检测机制
位监控:回读发送出去的位的数据
ACK 位:发送数据的节点回读 ACK 是 0,继续发送,否则意味着发生错误停止发送
Stuff Check:填充检测
CRC 检测
Form 检测:一些分隔符 del 等
发先帧错误后:某一个节点检查到发送或者接受的帧出现错误,会以发送错误帧的方式告知其他参与通信的节点,当前正在发送或者接受的帧是有问题的。

帧错误检测机制

3.2

CAN FD结构

硬件、协议轻微改动。CAN FD 数据段最多 64 字节。CAN FD 最高支持 8MB/s 的传输速率。CAN FD 采用可变速率,数据字段传输快。
CAN FD 没有远程帧,只分为两种:标准帧(标识符 11 位)和扩展帧(标识符 29 位)

CAN FD标准帧中的数据帧


CAN FD标准帧和扩展帧结构
  • SOF:帧起始


  • 标识符ID


  • RRS 代替原来的 CAN 帧的 RTR


  • IDE:表示是否是扩展帧


  • FDF:表示是否是 CAN 帧还是 CAN FD 帧


  • r:保留位

  • BRS(Bit Rate Switch):之后数据段传输是否变换速度,BRS 之前属于仲裁段,会以低速传输;BRS 开始到 CRC 分隔符为止,属于数据段,可以高速传输。CRC 分割符之后,由于需要 ACK 应答,因此又变为低速传输。

  • ESI:用来告知其余节点,发送方的错误状态。

  • DLC:0-8 线性表示数据长度,9-15离散的表示数据长度。

  • CRC:根据不同的数据长度使用不同长度的 CRC 校验。CAN 使用 15 位的 CRC 校验,且不包含填充位。CAN FD CRC 包含数据填充位。CAN FD 在 CRC 字段的前四位增加了对前面填充位的计数校验,前面的填充同样是 5 个相同位跟一个相反的位。CRC 字段不适用之前的填充,而是使用固定位填充,从 CRC 字段开始位置开始填充,每隔四个位填充一位,每次填充的位都取前一个的相反值。

先统计 SOF 开始到 CRC 字段之前填充位的个数对 8 取模,将数值以格林编码的形式存放在高三位,最后一位偶校验位,校验前三位。
当数据段大于 16 字节,使用 21 位 CRC
当数据段小于等于 16 字节,使用 17 位 CRC

3.3

CAN FD新增了FDF、BRS、ESI位

FDF:表示CAN报文还是CAN-FD报文。
BRS:表示位速率转换,该位隐性时,速率可变(即BSR到CRC使用转换速率传输),该位为显性时,以正常的CAN-FD总线速率传输(恒定速率);
ESI:表示发送节点状态。

文章来源:知乎

-  THE END  -

因文章部分文字及图片涉及到引用,如有侵权,请及时联系17316577586,我们将删除内容以保证您的权益。

谈思汽车 智能汽车安全新媒体
评论 (0)
  • 在全球电子产业面临供应链波动、技术迭代和市场需求变化等多重挑战的背景下,安博电子始终秉持“让合作伙伴赢得更多一点”的核心理念,致力于打造稳健、高效、可持续的全球供应链体系。依托覆盖供应商管理、品质检测、智能交付的全链路品控体系,安博电子不仅能确保电子元器件的高可靠性与一致性,更以高透明的供应链管理模式,助力客户降低风险、提升运营效率,推动行业标准升级,与全球合作伙伴共同塑造更具前瞻性的产业生态。动态优选机制:构建纯净供应链生态安博电子将供应商管理视为供应链安全的根基。打造动态优选管控体系,以严格
    电子资讯报 2025-04-07 17:06 42浏览
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 40浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 89浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 64浏览
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 36浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 82浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 62浏览
  • 文/Leon编辑/cc孙聪颖‍转手绢、跳舞、骑车、后空翻,就在宇树、智元等独角兽企业率领“机器人大军”入侵短视频时,却有资本和科技大佬向此产业泼了一盆冷水。金沙江创投管理合伙人朱啸虎近日突然对人形机器人发难,他表示“最近几个月正在批量退出人形机器人公司”。“只是买回去做研究的,或者买回去做展示的,这种都不是我们意义上的商业化,谁会花十几万买一个机器人去干这些活?”朱啸虎吐槽。不过,朱啸虎的观点很快就遭到驳斥,众擎机器人的创始人、董事长赵同阳回怼道:“(朱啸虎)甚至问出了人形机器人在这个阶段有什么
    华尔街科技眼 2025-04-07 19:24 52浏览
  • 曾几何时,汽车之家可是汽车资讯平台领域响当当的“扛把子”。2005 年成立之初,它就像一位贴心的汽车小助手,一下子就抓住了大家的心。它不仅吸引了海量用户,更是成为汽车厂商和经销商眼中的“香饽饽”,广告投放、合作推广不断,营收和利润一路高歌猛进,2013年成功在纽交所上市,风光无限。2021年更是在香港二次上市,达到了发展的巅峰,当年3月15日上市首日,港股股价一度高达184.6港元,市值可观。然而,如今的汽车之家却陷入了困境,业务下滑明显。业务增长瓶颈从近年来汽车之家公布的财报数据来看,情况不容
    用户1742991715177 2025-04-07 21:48 48浏览
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 55浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 90浏览
  • 贞光科技作为三星电机车规电容代理商,针对电动汽车领域日益复杂的电容选型难题,提供全方位一站式解决方案。面对高温稳定性、高可靠性、高纹波电流和小型化等严苛要求,三星车规电容凭借完整产品矩阵和卓越技术优势,完美满足BMS、电机控制器和OBC等核心系统需求。无论技术选型、供应链保障、样品测试还是成本优化,贞光科技助力客户在电动汽车产业高速发展中占据技术先机。在电动汽车技术高速发展的今天,作为汽车电子系统中不可或缺的关键元器件,电容的选型已成为困扰许多工程师和采购人员的难题。如何在众多参数和型号中找到最
    贞光科技 2025-04-07 17:06 31浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦