RTOS任务切换过程中堆栈的使用情况

原创 一起学嵌入式 2023-07-06 07:50

扫描关注一起学嵌入式,一起学习,一起成长


我们知道 Cortex-M3 系列单片机内部有双堆栈机制。即 Cortex‐M3  拥有两个堆栈指针:主堆栈(MSP)和进程堆栈(PSP)。任一时刻只能使用其中的一个。通过控制寄存器 CONTROL 中的选择位进行控制。
两个堆栈指针如下:
  • 主堆栈指针( MSP):复位后缺省使用的堆栈指针,用于操作系统内核以及异常处理例程(包括中断服务例程)
  • 进程堆栈指针( PSP):由用户的应用程序代码使用。
将RTOS 移植到 Cortex-M3 系列单片机上后,任务堆栈用的是 PSP,然而任务切换是在中断处理函数 PendSV() 中完成的。
那么在任务切换期间,MCU 在执行指令的过程中,是如何选择堆栈指针呢?
下面逐步进行分析。

堆栈的基本操作

堆栈操作就是对内存的读写操作,其地址由 SP 给出。寄存器的数据通过 PUSH 操作存入堆栈,以后用 POP 操作从堆栈中取回。在 PUSH 与 POP 的操作中, SP 的值会按堆栈的使用法则自动调整,以保证后续的 PUSH 不会破坏先前 PUSH 进去的内容。
堆栈的功能就是把寄存器的数据放入内存,当一个任务或一段子程序执行完毕后,能够恢复继续执行。正常情况下, PUSH 与 POP 必须成对使用,而且参与的寄存器,不论是身份还是先后顺序都必须完全一致。当 PUSH/POP 指令执行时, SP 指针的值也根着自减/自增。
Cortex‐M3 使用的是“向下生长的满栈”模型。堆栈指针 SP 指向最后一个被压入堆栈的 32位数值。在下一次压栈时, SP 先自减 4,再存入新的数值。

POP 操作刚好相反:先从 SP 指针处读出上一次被压入的值,再把 SP 指针自增 4 。

在进入 ESR 时, CM3 会自动把一些寄存器压栈,这里使用的是发生本异常的瞬间正在使用的 SP 指针(MSP 或者是 PSP)。离开 ESR 后,只要 ESR 没有更改过 CONTROL[1],就依然使用发生本次异常的瞬间正在使用的 SP 指针来执行出栈操作。

堆栈使用控制

已经知道了 CM3 的堆栈是分为两个:主堆栈和进程堆栈, 具体使用哪个堆栈(MSP 还是 PSP) 通过特殊寄存器 CONTROL[1] 来控制。
控制寄存器 CONTROL,有两个用途:其一用于定义特权级别,其二用于选择当前使用哪个堆栈指针。

当 CONTROL[1]=0 时,只使用 MSP,此时用户程序和异常 handler 共享同一个堆栈。这也是复位后的缺省使用方式。

当 CONTROL[1]=1 时,线程模式将不再使用 MSP,而改用 PSP(handler 模式永远使用 MSP)。这样做的好处在哪里?原来,在使用 OS 的环境下,只要 OS 内核仅在 handler 模式下执行,用户应用程序仅在用户模式下执行,这种双堆栈机制防止用户程序的堆栈错误破坏 OS 使用的堆栈。

再介绍一下两个操作模式,Cortex-M3 支持 两个模式和两个特权等级:
  • 两个模式:handler模式和线程模式
  • 两个特权等级:特权级和用户级

当处理器处在线程状态下时,既可以使用特权级,也可以使用用户级;另一方面, handler 模式总是特权级的。在复位后,处理器进入线程模式+特权级。
在特权级下的代码可以通过置位 CONTROL[0]来进入用户级。而不管是任何原因产生了任何异常,处理器都将以特权级来运行其服务例程,异常返回后,系统将回到产生异常时所处的级别。
用户级下的代码不能再试图修改 CONTROL[0]来回到特权级。它必须通过一个异常 handler,由那个异常handler 来修改 CONTROL[0],才能在返回到线程模式后拿到特权级。

运行在线程模式的用户代码使用 PSP,而异常服务例程则使用 MSP。这两个堆栈指针的切换是智能全自动的,就在异常服务的始末由 CM3 硬件处理。

中断处理过程

响应异常的第一个行动,就是自动保存现场的必要部分:依次把 xPSR, PC, LR, R12 以及 R3-R0 由硬件自动压入适当的堆栈中。
当响应异常时,如果当前的代码正在使用 PSP,则压入 PSP,也就是使用进程堆栈;否则就压入MSP,使用主堆栈。
一旦进入了服务例程,就将一直使用主堆栈。
在进入异常服务程序后,将自动更新 LR(链接寄存器R14) 的值为特殊的 EXC_RETURN。这是一个高28位全为1的值,只有 [3:0] 的值有特殊含义,如下表所示。当异常服务例程把这个值送往 PC 时,就会启动处理器的中断返回序列。因为LR 的值是由 CM3 自动设置的,所以只要没有特殊需求,就不要改动它。

总结一下,可以得出三个合法的 EXC_RETURN 值 :

如果主程序在线程模式下运行,并且在使用MSP时被中断,则在服务例程中 LR=0xFFFF_FFF9(主程序被打断前的LR已被自动入栈)。
如果主程序在线程模式下运行,并且在使用 PSP 时被中断,则在服务例程中 LR=0xFFFF_FFFD(主 程序被打断前的LR已被自动入栈)。

PendSV 中断介绍

SVC(系统服务调用,亦简称系统调用)和 PendSV(可悬起系统调用),它们多用于在操作系统之上的软件开发中。SVC 用于产生系统函数的调用请求。
SVC 异常通过执行 ”SVC” 指令来产生。该指令需要一个立即数, 充当系统调用代号。SVC异常服务例程稍后会提取出此代号, 从而解释本次调用的具体要求, 再调用相应的服务函数。
例如,

SVC 0x0 ; 调用 0 号系统服务

在 SVC 服务例程执行后,上次执行的 SVC 指令地址可以根据自动入栈的返回地址计算出。找到了 SVC 指令后, 就可以读取该 SVC 指令的机器码,从机器码中萃取出立即数,就获知了请求执行的功能代号。
如果用户程序使用的是 PSP, 服务例程还需要先执行 MRS Rn,PSP  指令来获取应用程序的堆栈指针 。通过分析 LR 的值,可以获知在 SVC 指令执行时,正在使用哪个堆栈
PendSV(可悬起的系统调用)和 SVC 协同使用。
SVC 异常是必须立即得到响应的(对于 SVC 异常来说,若因优先级不比当前正处理的高,或是其它原因使之无法立即响应,将造成成硬 fault ), 应用程序执行 SVC 时都是希望所需的请求立即得到响应。
PendSV 则不同,它是可以像普通的中断一样被悬起的。OS 可以利用它“缓期执行” 一个异常——直到其它重要的任务完成后才执行动作。悬起 PendSV 的方法是:手动往 NVIC 的 PendSV 悬起寄存器中写 1。悬起后, 如果优先级不够高,则将缓期等待执行。
PendSV 的典型使用场合是在上下文切换时(在不同任务之间切换)。例如, 一个系统中 有两个就绪的任务,上下文切换被触发的场合可以是:
  • 执行一个系统调用
  • 系统滴答定时器(SYSTICK)中断,(轮转调度中需要)
PendSV 异常会自动延迟上下文切换的请求,直到其它的 ISR 都完成了处理后才放行。为实现这个机制,需要把 PendSV 编程为最低优先级的异常。
如果 OS 检测到某 IRQ 正在活动并且被 SysTick 抢占,它将悬起一个 PendSV 异常,以便缓期执行上下文切换。
  1. 任务 A 呼叫 SVC 来请求任务切换(例如,等待某些工作完成)

  2. OS 接收到请求,做好上下文切换的准备,并且 pend 一个 PendSV 异常。

  3. 当 CPU 退出 SVC 后,它立即进入 PendSV,从而执行上下文切换。

  4. 当 PendSV 执行完毕后,将返回到任务 B,同时进入线程模式。

  5. 发生了一个中断,并且中断服务程序开始执行

  6. 在 ISR 执行过程中,发生 SysTick 异常,并且抢占了该 ISR。

  7. OS 执行必要的操作,然后 pend 起 PendSV 异常以作好上下文切换的准备。

  8. 当 SysTick 退出后,回到先前被抢占的 ISR 中, ISR 继续执行

  9. ISR 执行完毕并退出后, PendSV 服务例程开始执行,并且在里面执行上下文切换

  10. 当 PendSV 执行完毕后,回到任务 A,同时系统再次进入线程模式

RTOS系统中双堆栈操作

一个真正健壮的 CM3 软件系统是要使用实时操作系统内核的,通常会符合如下的要求:
  • 服务例程使用 MSP
  • 尽管异常服务例程使用 MSP,但是它们在形式上返回后,内容上却可以依然继续——而且此时还能使用 PSP,从而实现“可抢占的系统调用”,大幅提高实时性能
  • 通过 SysTick,实时内核的代码每隔固定时间都被调用一次,运行在特权级水平上,负责任务的调度、任务时间管理以及其它系统例行维护
  • 用户应用程序以线程的形式运行,使用 PSP,并且在用户级下运行
  • 内核在执行关键部位的代码时,使用 MSP,并且在辅以 MPU 时, MSP 对应的堆栈只允许特权级访问
在操作系统中,对于 EXC_RETURN 的修改,只是再寻常不过基本需求。在开始调度用户程序后,一定还伴随着 SysTick 异常,它周期性把执行权转入操作系统,从而使例行的系统管理以及必要轮转调度得以维持,任务切换过程如图所示:

上图为 SysTick 异常推动时间片轮转调度模式图。在这里,使用 PendSV(一个优先级最低的异常)来执行上下文切换,从而消灭了在中断服务例程中出现上下文切换的可能。
在 SysTick  中断例程中执行必要的操作,然后悬挂起 PendSV 异常以作好上下文切换的准备。退出 SysTick  中断处理函数后,PendSV 服务例程开始执行,并且在里面执行上下文切换。
在任务-1 和 任务2 程序执行过程中使用的是 PSP(线程堆栈)。进入中断服务程序后(SysTick  和 PendSV)在内部使用的是MSP(主堆栈)。
感谢阅读,加油~


扫码,拉你进高质量嵌入式交流群


关注我【一起学嵌入式】,一起学习,一起成长。


觉得文章不错,点击“分享”、“”、“在看” 呗!

一起学嵌入式 公众号【一起学嵌入式】,RTOS、Linux编程、C/C++,以及经验分享、行业资讯、物联网等技术知
评论
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦