【EsDA应用】串口转zws物联网云平台

原创 ZLG致远电子 2023-07-04 11:37
物联网逐渐成为各种行业的一个标配,如何让设备快速接入物联网云平台,将是产品在行业竞争中制胜的关键。


  简介

在实际项目中,我们经常会用到串口服务器,以提供串口与网络服务器之间的 双向数据透明传输 为核心业务。其能在不用修改原有产品系统的情况下,为串口设备提供了便捷的联网通道,即扩展了物联网功能,又保障了原有系统的稳定性。

本文以实现 串口转ZWS(即提供串口与ZWS云平台之间的 双向数据透明传输 业务)为目标,展开讲解,介绍如何通过 EsDA 工具和MPC-ZC1平台,进行图形化低代码应用开发,快速完成一个简易的串口服务器。
注:ZWS物联网云平台是致远电子推出的物联网IoT云平台
本次实验选用MPC-ZC1的串口2作为目标串口,实验目标如下图:
  • pc机串口对MPC-ZC1的串口2发送数据,等效对ZWS云平台发送数据;
  • pc机串口读MPC-ZC1的串口2接收到的数据,等效读ZWS云平台下发的数据。


  前期准备

若是刚开始接触EsDA MPC-ZC1 ,可先阅读 EsDA MPC-ZC1系列 文章,从零开始搭建环境和掌握基本开发流程,已有基础的可以跳过:
  • EsDA MPC-ZC1 入门(一)—— 软件安装
  • EsDA MPC-ZC1 入门(二)—— LED 控制
  • EsDA MPC-ZC1 应用——串口服务器(一)
  • EsDA MPC-ZC1 应用——串口服务器(二)

1. ZWS云平台入门与相关准备工作

ZWS物联网云平台是致远电子推出的物联网IoT云平台,和阿里云类似,可以接入各种IoT设备。 在浏览器上打开 www.zlgcloud.com ,可自行注册账号,可免费使用ZWS云平台提供的设备管理、数据管理、项目管理、触发规则管理等各种功能。

* 可通过ZWS物联网云平台上的ZLG物联网平台教程深入学习ZWS云平台的使用。

1.1 使用ZWS云平台的准备工作

1.1.1 点击www.zlgcloud.com进入zws云平台主页,创建云平台账号,并登录。

1.1.2 在ZWS云平台创建自己的设备。
在ZWS云平台创建设备,首先要创建设备类型,打开设备类型管理页面。

点击添加类型。

选择basic模板,并将新设备类型命名为aw_flow_test

点击确定,完成设备类型的创建。

1.1.3 添加设备

有了设备类型,就可以开始创建设备了,打开设备列表页面。

点击添加设备。

设备类型选择刚才新建的aw_flow_test类型,并将设备的名称命名为test和ID命名为zc1。

点击保存,完成设备添加。

点击返回设备列表。

即可在设备列表中看到新添加的设备。

2. 硬件相关准备工作

2.1 准备一个usb转TTL串口工具(文中使用的是ch340芯片作为主控一款工具,选用其它等效型号亦可),如下图所示:

2.2 准备好MPC-ZC1开发板,并按照下图所示连接好硬件。

将MPC-ZC1开发板引出的TX2与RX2分别与usb转TTL串口工具的RX与TX连接,并将usb转TTL串口工具插到pc机usb口上。

至此,准备工作已经完成。


  节点介绍

1. 串口系列节点介绍
MPC-ZC1串口通信,需要使用到AWFlow如下节点: serial_ex、serial_in_ex、serial_out_ex。
1.1 serial_ex
串口配置节点,属于隐式节点,不会被显示在画布中,通常用于进行参数的配置,需要和配套对应的功能节点一起使用。
1.1.1 属性
  • 名称(name): 节点名称,用于索引查找本节点;
  • 显示名称(displayName): 用于画布上显示的名称;
  • 端口(port): 用于索引串口设备;
  • 波特率(baudrate): 串口波特率参数;
  • 字节大小(bytesize): 数据位参数;
  • 奇偶校验(parity): 串口奇偶校验位参数;
  • 停止位(stopbits): 串口停止位参数;
  • 流控(flowcontrol): 串口流控模式配置;
  • 帧超时(frame_timeout): 收到数据后的总体等待时间;
  • 帧长度(frame_length): 期望收据的数据长度;
  • 码间超时(intersymbol_timeout): 字节间的最大超时时间。

* 其中帧超时、帧长度、码间超时可用于分包应用,3个参数可同时使用,任意一个条件满足都会触发分包。

配置节点(config类型)不具备输入输出。

1.2 serial_in_ex

串口接收节点,负责读取指定串口接收到的数据。
1.2.1 属性
  • 名称(name): 节点名称,用于索引查找本节点;

  • 显示名称(displayName): 用于画布上显示的名称;

  • 配置节点名称(config): 绑定一个串口配置节点。

1.2.2 输入

pump类型节点通常不具备数据输入。

1.2.3 输出

  • payload: 读取到串口接收的数据,字符串(可按二进制提取);

  • payloadLength: 数据长度,uint32_t 类型;

  • payloadType:payload 的数据类型,用于后续节点数据处理;

  • istream: 数据流对象,保存着串口接收的原始数据流;

* 当 帧超时、帧长度、码间超时 其中任意参数有效时,输出payload 格式,否则输出 istream。

1.3 serial_out_ex

串口发送节点,将上级节点输出的数据发送至串口发送接口。

1.3.1 属性

  • 名称(name): 节点名称,用于索引查找本节点;
  • 显示名称(displayName): 用于画布上显示的名称;
  • 配置节点名称(config): 绑定一个串口配置节点。

1.3.2 输入

  • payload: 负载数据,字符串类型(也可按二进制转换);

  • payloadLength: 负载数据长度,uint32_t类型;

  • payloadType: 指示payload的数据类型;

  • istream: 数据流对象;

* 支持输入 payload 和 istream 数据,优先使用 istream。

1.3.3 输出

sink类型节点通常不具备数据输出。

2. zws云系列节点介绍

zws云数据收发,需要使用到AWFlow如下节点: zws_iot 、zws_iot data_out、zws_iot data_in。

2.1 zws_iot

zws_iot配置节点,属于隐式节点,不会被显示在画布中,需要和配套的对应功能节点一起使用,主要用于配置连接zws云平台的相关参数。

2.1.1 属性

  • 名称(name): 节点名称,用于索引查找本节点;
  • 显示名称(displayName): 用于画布上显示的名称;
  • 是否连接(connection_status): 使能立即连接;
  • 设备类型(dev_type):ZWS 三元组-设备类型;
  • 设备ID(dev_id):ZWS 三元组-设备ID;
  • 设备密钥(dev_secret):ZWS 三元组-设备密钥;
  • 固件版本(firmware_version): 设备固件版本,产品自定;
  • 设备心跳周期(keep_alive_interval): 心跳周期。

配置节点(config类型)不具备输入输出功能

2.2 zws_iot_data_out

ZWS数据上报节点,上报数据到zws云平台。

2.2.1 属性

  • 名称(name): 节点名称,用于索引查找本节点;

  • 显示名称(displayName): 用于画布上显示的名称;

  • 设备配置(config): 绑定一个zws_iot配置节点;

  • 数据上报方式(output_type): 选择上报数据方式;

  • 目标键值对(key_names): 指定上报的数据点名称。

2.2.2 输入

  • payload: 要上报给zws云平台的数据;

  • 其他属性: 当与 key_names 匹配时有效。

2.3 zws_iot_data_in

ZWS 数据接收节点,接收zws云平台下发的数据。

2.3.1 属性

  • 名称(name):节点名称,用于索引查找本节点;

  • 显示名称(displayName): 用于画布上显示的名称;

  • 设备配置(config): 绑定一个zws_iot配置节点。

2.3.2 输出

  • payload: 字符串类型,ZWS云平台的下发的字符串数据。


  业务开发

我们主要是通过EsDA工具和MPC-ZC1平台,实现串口转zws。即在pc机上使用usb转串口工具连接MPC-ZC1开发板串口就可发送数据到zws云平台或读取zws云平台下发的数据。

1. 实现串口到ZWS云
1.1 添加串口节点
1.1.1 添加serial_in_ex与serial_out_ex到画布上,备用。

1.1.2 配置串口

双击serial_in_ex节点,打开属性面板。

选择 “添加新的serial_ex节点” ,点击编辑配置,进入配置节点属性面板。

配置如下图所示,点击右上角添加/更新完成配置

可以看到已经创建了一个新的配置节点,名为serial_ex,选择其作为配置节点,点击完成结束serial_in_ex节点的配置。

同样地,双击serial_out_ex节点,打开属性面板,直接选择刚刚创建的serial_ex节点作为配置节点。

1.2 添加和配置fscript脚本节点

fscript脚本节点可执行一段fscript脚本,可以为initialize、 func 和 finalize 分别指定一段脚本。

关于fscript请访问fscript教程,可阅读该文档深入了解。

https://github.com/zlgopen/awtk/blob/master/docs/fscript.md

1.2.1 将fscript脚本节点拖动到画布。

1.2.2 添加解析脚本

添加脚本,从串口流读取字符串数据,并根据zws_iot_data_out节点的数据上报模式RAW模式进行组包,同时将fscript脚本节点显示名称为serial_to_zws,点击完成保存。

功能代码如下:

var str = istream_read_string(msg.istream, 100) 

output.payload=str 

output.payloadLength=ulen(str)

1.3 添加zws_iot_data_out 与zws_iot_data_in节点

1.3.1 配置连接zws云平台的参数

双击zws_iot_data_out节点,打开属性面板,选择RAW上报方式。

选择 “添加新的zws_iot节点” ,点击编辑配置。

进入zws_iot配置节点属性面板(设备类型、设备id、设备密钥必须与之前在zws云平台上创建的设备一致,否则无法登录成功),点击右上角添加/更新,完成配置。

可以看到已经创建了一个新的配置节点,名为zws_iot_test,选择其作为配置节点,点击完成,结束zws_iot_data_out节点的配置。

双击zws_iot_data_in节点,打开属性面板,也选择刚刚创建的zws_iot_test作为配置节点,然后点击右上角完成节点配置。

1.4 绘制流图

将画布里的serial_in_ex节点、serial_to_zws节点、zws_iot_data_out节点按照下图所示依次连接起来。
这样,串口到ZWS云平台的流图就完成了。

2. 实现ZWS云到串口

2.1 添加fscript脚本节点

将一个新的fscript脚本节点拖动到画布,并按下图所示进行配置,然后点击右上角完成。

功能代码如下:

var str=msg.payload 

output.payload=str 

output.payloadLength=ulen(str)

2.2 绘制流图

画布里的zws_iot_data_in节点、zws_to_serial节点、zws_iot_data_out节点按照下图所示依次连接起来。

这样,ZWS云平台到串口的流图就完成了。


  结果验证

将上一小节绘制好的流图下载到MPC-ZC1板子里,我们就可以开始验证结果啦。

1. 验证串口到ZWS云平台

1.1 PC机打开串口工具(这里以sscom_v5.13.1为例),并选择之前接到PC机上的USB转TTL工具的对应COM口,波特率选择115200。

1.2 点击https://www.zlgcloud.com/进入zws云平台主页,登录云平台账号,并打开设备列表,选择刚才创建的设备,并点击设备详情。

1.3 点击实时数据,并选择raw数据。

1.4 使用sscom发送字符串数据,在ZWS云平台实时数据网页就能看到接收到的数据。

2. 验证ZWS云平台到串口

2.1 点击设备控制,根据下图配置,并点击发送,若发送成功网页会弹出“发送成功提示框"。

2.2 sscom会接收到来自zws云平台字符串数据。



  技术交流群
长按识别如下二维码可加入“EsDA嵌入式系统设计自动化交流群”,与志同道合的朋友交流,并有专业技术人员为您答疑解惑,如有问题可以咨询小致微信zlgmcu-888。

更多往期文章,请点击“ 阅读原文 ”。

评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦