历时7年,特斯拉自动驾驶写了一篇逆袭爽文

智能汽车设计 2023-06-30 10:54
特斯拉自动驾驶的重大彩蛋出现了。

国外黑客大神 GreenTheOnly 在特斯拉 FSD Beta 的代码中发现了一段隐藏代码。据了解,这段代码可以开启一个全新的模式Elon Mode(埃隆模式,代码以马斯克名字命名)



如果车辆时速在 60km/h 以下,开启这一模式,车辆可以实现 L3 级自动驾驶,无需双手把持方向盘。

可以说,特斯拉在技术上已经有能力实现 L3 级自动驾驶。只是,目前其仍没有拿到政府的相关批准。

在自动驾驶领域,特斯拉一骑绝尘。

但是,领先地位的铸就并非朝夕。

复盘特斯拉自动驾驶发展历程,实际上不亚于看了一篇逆袭爽文即使是特斯拉,也经历了从落后,到追赶超越,再到称王加冕,自我超越的五个时期。

2016 年,在 Mobileye 首先官宣「分手」后,特斯拉便开始自研算法。期间有一段时间,其算法表现甚至不如 Mobileye。

直到 2020 年,重构算法后,特斯拉才确立了行业领头羊的地位。

在这一时期涌现的 BEV、Transfomer、自动标注等技术,现如今已经成为如今行业普遍延用的技术路线。

但特斯拉并未止步,又对算法进行了升级,比如时序信息的加入,升级到占用网络。


自始至终,特斯拉追求的就不是「武林第一」的头衔。

特斯拉的目标只有一个:在纯视觉方案下,如何用算法刻画真实的物理世界,以实现自动驾驶。

总结来看,坚持视觉方案,特斯拉从第一性原则出发,针对算法问题进行持续迭代,使算法更趋向于理解真实世界。                                                                     
 01        
自研算法诞生前夜,
特斯拉与 Mobileye 分手

2016 年 5 月 7 日,一场发生于美国的车祸引起了全球的关注。

一辆 Model S(2015 年款)在使用 Autopilot 状态下,拦腰撞向了一辆垂直方向开来的白色挂车,事故导致了一人死亡。

彼时,这起事故被媒体冠以球首宗自动驾驶致命事故的标题经大肆报道。

在铺天盖地的报道之下,特斯拉的 Autopilot 成了众矢之的。

特斯拉和 Mobileye 的合作开始于2014 年

2014 年 10 月,特斯拉发布第一代硬件 Hardware 1.0,软硬件均由 Mobileye 提供,自动驾驶芯片是 Mobileye 的 EyeQ3

而在上述事故发生的两个月后,2016 年 7 月,Mobileye 宣布了和特斯拉终止合作。供应商抢先声明双方合作破裂,这在汽车市场来说颇为罕见。

对于分手原因,彼时双方各执一词。

在特斯拉看来,Mobileye 的黑盒模式是双方分手的原因所在。

特斯拉曾在一份文件中直言:黑盒模式之下,Mobileye 难以跟上特斯拉产品的发展步伐。

而 Mobileye 则表示:因为特斯拉的自动驾驶功能超过了安全的底线,因此才终止了双方的合作。

实际上,双方的分手早有预兆。

2015 年,特斯拉就开始布局自研自动驾驶软硬件,Mobileye 被弃用只是时间问题。

2015 年 4 月,特斯拉组建了基于计算机视觉感知的软件算法小组 Vision,准备自研软件。

同年,特斯拉还从 AMD 挖来了传奇芯片设计师 Jim Keller。随后,在 2016 年,特斯拉开始组建芯片研发团队,并由 Jim Keller 担任 Autopilot 负责人。

和众多俗套的情爱故事一样,与 Mobileye 分手之后,特斯拉也经历了短暂的低谷和失落。

但在随后的日子里,失意的特斯拉最终成长为自动驾驶领域领头羊。

02
2016 年-2018 年
特斯拉初出茅庐

在告别了 Mobileye 之后,特斯拉选择全栈自研自动驾驶算法,自立自强。

在自动驾驶软硬件发展思路上,马斯克为特斯拉制定了硬件先行,软件更新的思路。

硬件方面,2016 年 10 月,特斯拉还发布了第二代硬件 Hardware 2.0。自动驾驶芯片由英伟达提供,配置 8 个摄像头+12 个远程超声波雷达+1 个前置毫米波雷达,并且这一套配置延续到了 Hardware3.0

算法方面,特斯拉延用了业内常规的骨干网结构;使用 2D 检测器进行特征提取;以人工对数据进行标注。

整体来看,这一套自动驾驶算法还比较原始,相对传统。

值得一提的是,在这一时期,特斯拉自动驾驶算法仍处于技术追赶阶段。

硬件配置来看,尽管 HW2.0 优于此前 Mobileye 提供的的 HW1.0,但受限于软件算法,彼时特斯拉的自动驾驶能力和 Mobileye 有着较大差距。

尽管2016 年 10 月,特斯拉推出了 HW2.0,但在空跑了大半年后,直到2017 年 3 月Model3/Y 才开始能够真正用上 Autopilot 功能。

在算法能力追上 Mobileye 后,特斯拉发现,当前使用的算法存在着诸多不足。其中,最为明显的是效率问题。

在那一时期,自动驾驶的目标检测普遍遵循一个通用的网络结构:

Input backbone neck head Output

  • 主干网络 backbone 为特征提取网络,主要用于识别图像中的多个对象;

  •  neck 则主要负责提取更为精细的特征;

  • 而在经过特征提取之后,检测头 head 提供了输入的特征图表示,比如检测对象,实例分割等。


值得一提的是,当时业内自动驾驶视觉神经网络都只有一个 head。

但是,在自动驾驶的场景中,往往需要在一个神经网络中同时完成多项任务,比如车道线检测,人物检测与追踪,信号灯检测等。

这就使得原有算法出现了「脑袋不够用」的情况。

因此,在 2018 年,特斯拉开始了对自动驾驶算法的第一次革新,瞄准自动驾驶网络结构及效率。

03
2018 年-2019 年
算法利刃初成

在这次算法革新中,特斯拉构建了多任务学习神经网络架构 HydraNet,并使用了特征提取网络 BiFPN

这使得特斯拉算法效率得到了提升。其中,最具特色的为 HydraNet。

Hydra 一词源于传说中的生物「九头蛇」,因而 HydraNet 也被称为九头蛇网络

以「九头蛇」命名的原因在于,HydraNet 结构能够完成多头任务,而非此前的单一检测。


相较于此前算法,HydraNet 能够减少重复的卷积计算,减少主干网络计算数量,还能够将特定任务从主干中解耦出来,进行单独微调。

不过,此次革新更多是一次算法的微调,并没有达到重构和跨越性的程度。

在融合方式上,特斯拉采用的仍是后融合策略,数据进行人工标注,且自动驾驶算法仍旧是小模型,与后续算法革新相比,并没有太大的突破。

这一时期,在改良了传统算法之后,特斯拉还对硬件进行了新一轮的更新。

在历经四年研发后,2019 年 4 月,特斯拉发布了 Hardware 3.0 系统。其中最大的亮点是特斯拉采用了自研的 FSD 芯片

特斯拉 FSD 芯片算力达 72TOPS,远高于当时市面上的自动驾驶芯片。同时,FSD 芯片以两块 NUD 为主,图片处理效率更高,且不装配激光雷达。

新硬件的发布,为特斯拉算法的下一次迭代提供了可能。

在完成硬件准备的前期工作之后,特斯拉开始了对自动驾驶算法的史诗级重构。

04
2020 年
特斯拉自动驾驶一骑绝尘

2020 年 8 月,马斯克在推特上发文称,Autopilot 团队正对软件的底层代码进行重写和深度神经网络重构;全新的训练计算机 Dojo 正在开发。

马斯克的一封推文激起浪千重。市场对特斯拉自动驾驶算法的发展方向投以关注。

在他看来,对 AP 的重写,不是对现有结构的优化,而是一场量子式跃迁

纵览特斯拉自研算法近十年历程,2020 年可以说是其最为璀璨的一年。

在这一场行业重构中,特斯拉带来的一系列技术方向被自动驾驶行业延用至今,如 BEV+Transformer 的组合,特征级融合取代了后融合,数据自我标注取代人工标注等。

如果说 2020 年自动驾驶江湖是群雄逐鹿时期,那么,自 2020 年之后,这片江湖便进入了特斯拉时代。

(1)BEV+Transformer,自动驾驶进入大模型时代

在特斯拉的这场技术重构中,最为引人注目的便是于 2020 年引入的 BEV+Transfomer 架构。

在特斯拉看来,过去自动驾驶依靠2D 图像+ CNN便企图实现全自动驾驶是不太可能的。

主要原因在于,摄像头采集的数据是 2D 图像,但自动驾驶需要面对的却是三维真实世界。

以二维数据解决三维问题,不大现实。

纯视觉路线之下,摄像头拍摄的 2D 图像如何「升维」到 3D,成了特斯拉需要思考的问题。

在特斯拉看来,2D 图像「升维」的最佳表达方式是:BEV(鸟瞰图)

BEV 视角,形成车身自坐标系的好处在于两方面:

  • 一是将不同视角在 BEV 下统一表达是很自然的描述,有利于后续规划控制模块任务;

  •  二是 BEV 视角解决了图像视角下的尺度和遮挡问题。


但紧接着问题就来了:如何实现 2D 向 3D 的转换,以引入 BEV?

2D 图像是照片,存在近大远小的问题。而解决近大远小问题的传统转变方法是依靠 IPM(逆透视变幻),进行先 2D 再 3D 的正向开发。

IPM,简而言之,就是利用照相机成像过程中坐标转换的公式,在已知照片的光圈,焦距等条件下,去「算出」3D 坐标数据,对 2D 的图像进行3D 复原

但是,和课堂上的算数题一样,这样的计算需要以各种「完美」假设为前提。比如,地面是「完美」水平的,相机和地面不存在相对运动等。

也即是说,只要车辆有任何一点颠簸,道路有一点不平,就会打破这个假设,导致最终的成像结果失真。

另外,在一系列卷积,提取特征,融合之后,得到的感知结果,再投影到 BEV 空间中,精度很差,尤其是远距离的区域。

以此来看,利用传统方法,实现从 2D 到 3D 的「升维」,很难实现。


在这样的情况下,特斯拉引入大模型 Transformer,进行 3D 到 2D 的逆向开发。

在这一方式中,特斯拉先在 BEV 空间层中初始化特征,再通过多层的 Transformer 和 2D 图像特征进行交互融合,最终得到 BEV 特征,也就是先 3D 再 2D,反向开发,实现 BEV 的转换。

Transformer 是一种基于注意力机制Attention)的神经网络模型。与传统神经网络 RNN 和 CNN 不同,Transformer 不会按照串行顺序来处理数据,而是通过注意力机制,去挖掘序列中不同元素的联系及相关性。

这种机制背后,使得 Transformer 可以适应不同长度和不同结构的输入。

Transformer 的引入,使得 BEV 视角在自动驾驶领域得以实现。

而 3D 空间的引入,使得自动驾驶的思维方式,更接近于真实世界。

但是,在这一阶段,BEV 空间仍是对瞬时的图像片段进行感知,缺乏时间序列信息,自动驾驶仍未进入 4D 空间。

(2)特征级融合取代后融合成为主流

BEV 即鸟瞰图,上帝视角,车身自坐标系。

若仅从定义来看,BEV 或许是特斯拉各类「烧脑」术语中最容易理解的。但这丝毫不影响 BEV 对自动驾驶行业的价值和意义。

引入 BEV 视角后,给自动驾驶带来最直观的变化是,推动 2D 图像向 3D 车身自坐标系的转变,方便后续的决策和控制。

但除此之外,BEV 还使得自动驾驶从后融合(或称「决策层融合」)向特征级融合(或称「中融合」)方向迈进。

同一物体在不同传感器视角中的状态

自动驾驶的每一个传感器,都在对周遭世界进行感知。

每个摄像头、雷达都包含了其对真实世界的理解,但由于角度,传感器类型的不同,使得车辆没办法依靠一个传感器完成对周遭世界的认识。

因此,每个传感器所感知的只是现实世界的其中一块拼图,要实现自动驾驶,便需要完成拼图拼凑。

而传感器数据的融合则可以看成是拼图的拼凑步骤。

所谓的后融合,便是由决策层域控制器进行拼图的拼凑。

后融合的好处非常明显,传感器即插即用,融合在域控制器决策层,对芯片算力要求较低。

后融合策略对车端算力要求仅在 100TOPS 以内,作为参考,前融合却需要 500-1000TOPS 算力

而特征级融合介于两者之间,大约需要 300-400TOPS

因此,在自动驾驶的早期,由于门槛低,后融合策略受到了自动驾驶供应商、车企的欢迎。

但是,后融合策略容易产生信息失真,造成错误决策。

后融合策略下,低置信度信息会被过滤掉,产生原始数据的丢失,并且可能误差叠加,导致信息「失真」。

尤其是在恶劣天气下,这样的情况更为明显。这就有可能造成决策层错误决策。

相较于后融合策略,特征级融合本质上更接近于传感器的原始数据。因此,其准确度必然会更高。

除此之外,在 BEV 空间层进行特征级融合,还具有多种好处,更是后续行业革新的方向:

  •  跨摄像头融合和多模融合更易实现。大多数行业公司采用的是异构传感器(摄像头、激光雷达、毫米波雷达等)感知方案。而 BEV 空间能够统一传感器数据维度,更容易实现特征融合。

  •  时序融合更易实现。

  •  可「脑补」出遮挡区域的目标。

  •  更方便端到端做优化。


得益于此,BEV 架构也成了国内自动驾驶公司延用的基本方向。

(3)数据从人工标注转向自我标注

在自动驾驶圈,有一句名言:数据决定了算法的上限,模型只是不停的逼近这个上限。

数据燃料在自动驾驶算法训练中的地位可见一斑。

为了确保投喂给算法的数据正确而有益,过去自动驾驶行业往往都采取人工标注的方式。

特斯拉也不例外。

在 2018 年时,特斯拉选择和第三方公司合作,但这样的方式标注效率很低,并且沟通的成本很高。

为了实现标注效率和质量的提升,特斯拉自建了标注团队,人员规模一度超过 1000 人。

2D 图像的人工标注

但是,自建标注团队也随之带来了新问题。

随着自动驾驶数据的进一步扩大,所需的标注人员数量也在进一步增长,这意味着成本水涨船高。

鉴于高成本,低效率的属性,人工标注自然地成为了特斯拉的「眼中刺」。

在 BEV+Transfomer 引入后,特斯拉的数据标注效率得到了一定提升。在引入 BEV 空间层前,标注人员需要标记 8 张 2D 图像,而在 BEV 空间层下,仅需要进行一次 3D 空间中的标注便可完成。
但是,由于人类标注员对于语义信息更擅长,而计算机对几何,重建,三角化,跟踪更加擅长。

这使得 BEV 下,数据标注是一种「半自动」状态,需要人工和计算机进行协作。

同时,尽管标注的效率有所增加,但在数据的指数级增长下,仍旧捉襟见肘。

显然,自动标注才是效率、效果、成本三方矛盾的最终破局方法。

为此,在 2020 年开始,特斯拉研发并使用了数据自动标注系统。

特斯拉数据标注的思路非常简单:用更多的数据训练更大的模型,再用「大模型」的数据训练车端「小模型」。


在车辆行驶过程中,摄像头收集的路面信息,打包上传到服务器的离线神经网络大模型,由大模型进行预测性标注,再反馈给车端各个传感器。

由于传感器视角不同,当预测的标注结果在 8 个传感器均呈现一致时,则这一标注成功。

而这一过程,也即是车载模型对服务器的大模型进行自动标注系统的蒸馏。


同时,车辆也在充当特斯拉「众包地图」采集车的角色。

当不同的车辆走在同一段路时,离线大模型将记录同一段路不同的标注结果。

当数据标注系统将不同车辆,不同时间,不同天气状况下的标注结果叠加后,得到了一个具备高度一致性的标注结果,这也意味着,特斯拉得到了自己的高精地图

05
2021 年-2022 年
剑指端到端大模型

BEV+Transfomer 架构的引入,可以说是一场行业重构。

这一「黄金组合」在自动驾驶领域有着诸多优势,是过去算法所不具备的。

但是,BEV+Transfomer 在推出之初,也并非完美无瑕。

随着自动驾驶的进一步发展,面临场景逐渐多样化,coner case 越来越多,这便对自动驾驶算法的泛化能力提出了新的要求。

在随后的两年时间里,为了让算法更接近人类的思考方式,特斯拉对 BEV+Transformer 架构进行了改良。

其中,最主要的两个改良是时序信息的增加和占用网络的应用。

虽然 2020 年,特斯拉利用 BEV 解决了 2D 向 3D 转换的空间问题,但却仍未引入时序信息。

也即是说,在上一个版本中,BEV 仍然是对瞬时的图像片段进行感知,缺乏时空记忆力,汽车只能根据当前时刻感知到的信息进行判断。

时序信息的缺席,让自动驾驶潜藏了极大的安全风险。


例如在行车过程中,如果有行人正在穿过马路,过程中被静止的障碍物遮挡,如果汽车仅有瞬时感知能力,由于在感知时刻行人正好被汽车遮挡,则无法识别到行人,可能威胁驾乘人员和行人的安全。

人类司机在面对类似场景时,则会根据之前时刻看到行人在穿越马路的记忆,能够意识到行人被车辆遮挡,且有继续穿越马路的意图,从而选择减速或者刹车避让。

如何给自动驾驶增加「记忆」功能便显得尤为关键。

因此,自动驾驶感知网络也需要拥有类似的记忆能力,能够记住之前某一时间段的数据特征,从而推演目前场景下可能性最大的结果,而不仅仅是基于当前时刻看到的场景进行判断。

为了解决这一问题,特斯拉感知网络架构引入了时空序列特征层,使用视频片段,而不是图像来训练神经网络,为自动驾驶增添了短时记忆能力。

除了引入时序网络外,在 2022 年,特斯拉对 BEV 进行了升级——引入占用网络。

在过去,自动驾驶算法和人作比较,往往显得呆板、过于机械。

在传统的自动驾驶算法中,大多是依靠大数据喂养,得出「经验」,然后识别物体,再进行决策。

也即是说,算法需要经历,感知,辨识,决策,执行这样的思考流程。

但在现实世界里,真实的路况下,实际情况是错综复杂的,存在着大量的极端情况(corner case),要让算法认全所有事物,显然不太现实,且效率不高。


以「二仙桥大爷」为例,若自动驾驶遇上了如此「超载」的车辆,算法将其识别为一般的三轮车,并判断路况,但对车后拖载的货物,既不显示,也不识别。

当自动驾驶的车辆进行超车变道时,就容易发生剐蹭等事故,潜藏一定风险。

为了解决这类问题,特斯拉将 BEV 升级到了占用网络(occupancy network)


在 2D 图像世界中,一个物体由无数个像素点组成。

而在占用网络之下,3D 的真实世界则是由无数个微小立方体——体素堆叠组成。

占用网络,将原本的 BEV 空间,分割成无数的体素,再通过预测每个体素是是否被占用。

简单来说,不考虑这个物体到底是什么,只考虑体素是否被占用。这使得非典型但却存在的事物能够直接表示出来,增加了算法的泛化能力和对现实世界的认知。

实际上,占用网络的体素,充当了激光雷达点阵的作用。而占用网络最直接的效果便是实现了「伪激光雷达」的效果。

时序信息的增加,升级占用网络,使得特斯拉自动驾驶算法的泛化能力得到了提升。

而借助于算法提升,特斯拉 FSD 更能刻画真实的物理世界,进而才有可能实现端到端模型。

06
未来,自动驾驶将走向何方

在自动驾驶领域,特斯拉毫无疑问是领头羊。

在确定纯视觉路线后,特斯拉在自动驾驶算法上进行了四次迭代更新。除了第一次是为追赶行业发展以外,其余更新均引领行业的发展。

特斯拉能够走在行业前列,除了优秀的团队以外,更在于整体的思路设计秉持「第一性原理思维」。

所谓的「第一性原理思维」,即一种刨根问底、追究最原始假设和最根本性规律的思维习惯。

「物理学教会你根据第一性原理做出推理,而不是通过类比进行推理。类比式推理就是几乎丝毫不差地模仿或模拟他人。」马斯克曾如此说到。

在特斯拉自动驾驶迭代思维上,第一性原理思维渗透在了方方面面:

  • 计算效率不高,HEAD 部分不够用?开发了九头蛇网络结构;

  • 小模型无法实行并行计算,泛化能力不强,BEV 无法精确实现?引入大模型 Transfomer,逆向开发;

  • 现有芯片的构成冗余,不适配纯视觉路线需求,且成本高?自研 FSD 芯片;

  • 数据标注成本高,数据训练量不足?建设超算中心 DOJO,实现数据自我标注,同时虚拟场景训练算法,提高自动驾驶能力等等。


在锚定纯视觉路线后,特斯拉均在算法迭代中,针对各种问题,发现短板,并加以解决。

而这,正是特斯拉执牛耳的关键。

同时,鉴于特斯拉的行业领导地位,研究其自动驾驶算法迭代历程后,也能让外界窥见自动驾驶行业的未来。

(1)轻地图,重感知成行业主流方向

在过去,自动驾驶行业,往往采取高精地图方案,辅助实现自动驾驶。

高精地图能够提供超视距、厘米级相对定位及导航信息,在数据和算法尚未成熟到脱图之前,能够成为整机厂的「拐杖」,帮助自动驾驶的落地。

但是,和其优点一样,高精地图的缺点也非常明显:

  • 需要图商采集更新,无法实时更新;

  • 制图资质受到严格管理,信息采集面临一定法规风险;

  • 成本昂贵高昂。


在这样的情况下,特斯拉构建了自己的「高精地图」。

通过 BEV 空间层,特斯拉将不同视角的摄像头采集到 2D 图像统一转换到 BEV 视角,车辆形成自车坐标系。

同时,引入服务器的离线神经网络,实现数据自动标注,确保标注效果,且在无数「众包采集车」的帮助下,叠加标注结果,得出道路信息标注的「一解」。

BEV、Transfomer、引入时序信息、数据自动标注等等,一系列技术加持之下,特斯拉才得以实现「无图」。

国内市场,「轻地图,重感知」也成为了行业发展的主流方向。

2022 年 4 月,毫末智行提出要做重感知、轻地图的城市智能驾驶,开始降低方案中高精地图的权重,乃至做到无需高精地图;

2022 年年底,小鹏发布了第二代智能辅助驾驶系统 XNGP,并对外宣布将摆脱高精地图限制;

2022 年下半年,华为余承东表示:

「自动驾驶未来不应过分依赖于高精地图、车路协同。

今年 5 月,蔚来发布了 Banyan 2.0.0 系统,完成了向 BEV 感知路线的切换;

国内一众厂商深受特斯拉路线影响,延用 BEV 架构,开始对高精地图动刀,「重感知,轻地图」路线成为了市场主流发展方向。

特斯拉的 BEV+Transformer 方案为行业的「脱图」提供了技术上的可行性。

从特斯拉路线经验来看,如果要以纯算法,实现摆「脱图」,或许需要车企同时具备以下两个条件:

  •  引入 BEV 架构,实现异构传感器的融合,生成活地图;

  •  具备超算中心,或离线服务器的大模型,能够实现自动标注及仿真训练;


目前,「轻地图」路线大多仍是通过软硬件结合的方式,降低高精地图需求,本质上仍然是「多传感器+高精地图」路线。

从行业发展趋势来看,国内车企也在向云端大模型+BEV的路线靠拢,以期实现「脱图」。

6 月 17 日,在理想汽车家庭科技日上,理想副总裁兼自动驾驶负责人郎咸朋便对外公布了理想汽车的 NPN 网络。

郎咸朋介绍称,在车辆行经一段路时,NPN 网络将道路信息特征进行提取后,存储于云端。

而当车辆再次行驶到该路口时,再将储存的道路特征拿出来,与车端模型进行特征层融合,以此解决道路信息的遮挡问题。

当 NPN 网络对同一路段堆叠大量标注结果后,最终便达到了「高精地图」的效果。

理想汽车的「NPN 网络+BEV」实际上延用的就是特斯拉的「离线大模型+BEV」的技术路线。

(2) 升级到占用网络,实现去激光雷达

在 2022 年的 AI day 上,特斯拉将 BEV 升级到了占用网络。

占用网络显著的特点是,抛弃了过去算法需要先识别、判断物体,再进行决策的思路。

在面对训练中没有出现过的物体时,如侧翻的白色大卡车,垃圾桶出现在路中央,传统视觉算法是无法检测的。

而占用网络,则用体素的概念,仅仅是判断该空间有没有物体,而不去深究物体是什么。

这大幅提升了模型的泛化能力,有助于城市 NOA 的实现。

从特斯拉 AI Day 演示效果来看,特斯拉通过鸟瞰图、占用检测和体素分类使纯视觉方案已经达到伪激光雷达效果。

值得注意的是,在特斯拉发布的最新硬件 HW4.0 中,预留了 4D 毫米波雷达接口这预示着特斯拉或将重启毫米波雷达,以弥补纯视觉算法在高程信息感知上的不足。

从成本来看,公开报道显示,4D 毫米波雷达价格仅约为高线束激光雷达的 1/10。

(3)AI 大模型卷入自动驾驶,超算中心成标配


今年 5 月,马斯克发推文称,FSD11.透露称,FSD V12 版本将完全实现端到端。

什么是端到端?

目前,自动驾驶模型架构将驾驶目标分为感知、规划、控制三大模块。

但是,这和人类驾驶行为有着根本的不同。

人类司机在看到视觉信息后,不会对所看到的物体进行数据分析,而是基于经验,在「黑盒」状态下完成驾驶决策,并协调手、脚执行任务。

而端到端模型更为贴近人的驾驶决策行为。

摄像头采集到外界的视频数据后,算法直接输出的是方向盘转角多少度的控制决策,不存在单独的「图像识别检测」任务。

端到端模型的决策在「黑盒」状态下进行,通过赋予数据,使算法积攒「经验」,使得其决策和执行同步进行。

在理想状态下,「黑盒」状态下的端到端大模型实际比基于规则设定的传统小模型更为安全。

比起传统的设定规则,参数对算法结构进行「补丁」式矫正,只要投喂的正确案例足够多,那么 AI 大模型模型所需要的时间必然小于传统规则。

而经过足够的数据和案例的投喂,端到端模型的泛化能力也必然强于传统的自动驾驶算法。

为了使得大模型落地,海量的数据投喂成了厂商必然选择。

毫末智行 CEO 顾维灏就曾公开表示,要使由数据驱动的 Transformer 大模型量变引起质变需要 1 亿公里的里程数据。

这一海量数据显然无法单独依靠某个厂家通过销售车辆完成。在这样的情况下,超算中心便成了 AI 大模型落地的标配。

超算中心对大模型的助力主要体现在数据标注和仿真训练上。

特斯拉 2022 年发布的超算中心 Dojo 便是如此。

特斯拉 Dojo 的功能,能够利用海量的视频数据,做「无人监管」的标注和仿真训练。


特斯拉打样在前,国内不少厂商也紧随其后。在 2022 年以后,超算中心开始活跃在自动驾驶领域。

2022 年 8 月,基于阿里云智能计算平台,小鹏推出了扶摇超算中心,每秒浮点运算达 60 亿次,专用于自动驾驶模拟训练。

同时,小鹏还推出了全自动标注系统,将标注效率提升近 4.5 万倍,以前 2000 人一年的标注量,现在 16.7 天可以完成。

今年 1 月,毫末智行和火山引擎联合打造了 MANA OASIS 智算中心,用于自动标注及仿真训练。

据悉,MANA OASIS 智算中心,每秒浮点运算达 67 亿次,存储带宽每秒 2T,通信带宽每秒 800G。

除了小鹏和毫末以外,跟随特斯拉步伐,国内车企设立的超算中心还有:吉利设立了星瑞智算中心;智己汽车的云上数据超级工厂等。

可以说,在自动驾驶领域,特斯拉引领着行业的发展方向。

自 2020 年以来,特斯拉率先使用了 BEV、Transfomer 架构、离线网络大模型,随后,国内众多车企才开始纷纷跟进。

而近一段时间,FSD 入华的话题时常引发市场讨论。

在热议的背后,有观点认为,FSD 将是那条引起自动驾驶行业优胜劣汰的鲶鱼。言外之意满是对行业赛道参与者的担忧。

这倒也不用过分忧虑。

正如前文所言,特斯拉也并非一开始就是江湖第一

在经历「被分手」后,特斯拉自动驾驶算法经历了落后,到追赶,再到引领的不同时期,更多是带有逆袭成分。
而逆袭的关键点在于:选好目标,敢于一条道走到黑

在过去一段时间里,市场对于特斯拉的纯视觉方案并不看好。不少业内观点认为,激光雷达是安全件,纯视觉方案的自动驾驶并不具备可行性。

但在确定纯视觉路线以后,针对纯视觉方案的各种问题,特斯拉从第一性原理出发,思考确切问题的根本,并提出解决方式。

最终的结果是,特斯拉成为自动驾驶领头羊。

目前,自动驾驶也并未到决赛阶段。对于国内这一赛道的参与者,市场要有足够信心。

毕竟,特斯拉 FSD 仍未入华,而赛道参与者的较量仍未真正开始。

END

智能汽车设计 关注智能汽车发展,分享智能汽车知识!
评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 112浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 105浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 120浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 125浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 124浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦