功能安全中的元器件失效率是怎么计算出来的?

汽车ECU开发 2023-06-29 08:53

上周又听了一下内部的功能安全培训,主要就是讲的功能安全中FMEDA的计算,以前也听过,但是一直没听懂,这次感觉听懂了,于是抓紧时间,趁自己还没忘记之前,赶紧写下来,希望不是一听就会一学就废。于是根据电阻的计算方式做了一个整理,也希望这一篇文章是我开启功能安全这个大板块知识深度学习的开端,但愿能开个好头。

失效率的概念(FR)

失效率是指系统或零件在单位时间内失效的概率,其单位通常用FIT表示,1FIT(失效率)指的是1个(单位)的产品在1*10^9小时内出现1次失效(或故障)的情况。也就是每十亿个小时的失效次数为1。

失效率的计算公式

首先直接上硬货,给出一个电阻的失效率计算公式

再来解释一下这个公式中唯二的两个参数的意义:λref表示参考条件下的失效率,πT表示温度相关系数。

继续往下,那这两个参数分别怎么计算呢,λref这个倒不是算出来的,而是查表得到的,在一些元器件的标准中可以查到,在参考条件55℃这个条件下,电阻的参考失效率是0.2FIT。

πT这个的计算公式如下:

单纯从字是不是感觉一环套一环,越来越复杂了,我也有这种感觉,不过也没关系,继续往下分析。

对于这个里面的A,Ea1,Ea2这三个常数,用查表的方法可以得到,查表如下:

而对于πT这个公式中的参数Z和Zref的计算公式则如下:

这个公式里面的Turef,T1,T2这三个温度的定义分别如下,应该就是将我们通常用的摄氏温度转换成开尔文温度,我估计这个应该是结合绝对零摄氏度下分子的运动状态计算得到的,有点类似于我之前看过的那个加速老化模型中的一些公式。不过到这个程度就可以了,我们先掌握怎么用这个公式就好了。

继续往下深挖,θ1、θ2和θuref又是表示什么,怎么来的?直译过来:
θ1    就是平均参考表面温度
θ2    是平均实际表面温度

θuref  是参考环境温度。

从前面的表格中可以查到θ1是55℃,θuref是40℃,现在就不知道θ2怎么算了。别着急,标准里面肯定是能实现闭环的。

其实看到这里我也是崩溃的,没完没了的样子,θu和Δθ又是什么玩意,还好标准中把这块的内容放到了一起,不用到处找。
θu的意思是平均实际环境温度,这个平均实际环境温度是低于平均参考温度θ1

Δθ的意思是自身发热产生的温升

继续给出来Δθ的计算公式,直到这一层,这里面的参数才算是可以全部都知道了。温升就是功率乘以热阻,然后等于后面这个公式,但是给出了一个等效替代的公式,至于怎么来的实在不太明白。

P就是电阻实际工作时候的功率

Pmax表示电阻的额定功率

Rth就是热阻

θmax是最高环境温度

θbr是表示功率降额曲线拐角处的温度值

计算范例

分解到上面那一步,可以说是完全把失效率的公式都给拆散的透透的,那就举个例子实际上的来计算一把。就是从下往上把刚刚拆散的公式组装起来。

以Vishay的一款封装为0603的普通贴片电阻为例,假设阻值为1K,应用该电阻的ECU安装位置为发动机舱,通过的电流为5mA。其功率降额曲线如下:

可以得到:

其工作时的功率P=0.025W

其额定功率就是Pmax=0.1W

最高环境温度就是θmax=105℃

功率拐角处的温度θbr=70℃

到这里就可以计算出Δθ=35℃ X 0.25=8.75℃;

另外,在我去年写的那篇加速老化模型的文章中可以知道,对于发动机舱的ECU,其环境温度分布概率如下表所示:

环境温度

温度分布概率

-40℃

6%

23℃

65%

58℃

20%

100℃

8%

105℃

1%

可以计算出平均实际环境温度θu=33.2℃。

然后就可以得到:

θ2=θu+Δθ=33.2+8.75=41.95℃

Turef=θuref+273=313K

T1=θ1+273=328K

T2=θ2+273=314.95K

把上面计算出来的数字带入到Z和Zref的公式中去,再把Z和Zref代入到πT的公式中去,可以计算得到πT=0.740444671。

终于来到了最后一步 失效率

λ=λref * πT=0.2*0.740444671=0.1480889342。


总结

你以为这就结束了吗?NO、NO、NO这个仅仅是电路中一个电阻的失效率,还要计算所有电阻的失效率,然后再计算电容、二极管、MOSFET等等所有元器件的失效率,结束了吗?还没有,然后还要根据所有器件对于某个功能安全目标的FTA分析下的影响来计算我们常说的单点失效率、潜在失效率、残余失效率,后面的工作也是极其庞大。但千里之行始于足下,迈开这一步才有更广阔的的天空。

end

分享不易,恳请点个【再看】
汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 新能源汽车市场潮起潮落,只有潮水退去,才能看清谁在裸泳。十年前,一批新能源汽车新势力带着创新的理念和先进的技术,如雨后春笋般涌入中国汽车市场,掀起一场新旧势力的角逐。经历市场的激烈洗礼与投资泡沫的挤压,蔚来、理想、小鹏等新势力车企脱颖而出,刷爆网络。不曾想,今年新势力车企杀出一匹“超级黑马”,爬上新势力车企销量榜前三,将蔚来、小鹏等昔日强者甩在了身后,它就是零跑汽车。公开数据显示,11月份,零跑汽车实现新车交付量约4.02万辆,同比增长117%,单月销量首次突破4万辆;小鹏汽车当月共交付新车约3
    刘旷 2024-12-26 10:53 155浏览
  • 发明阶段(20世纪80年代至90年代)起源:当时ASIC设计成本高,周期长,流片失败率高,业界需要一种通用的半导体器件进行流片前测试和验证,可编程逻辑器件就此产生。诞生:1980年,Xilinx公司成立。1985年,Ross Freeman制造了第一片PFGA芯片XC2064,采用4输入,1输出的LUT和FF结合的基本逻辑单元。发展阶段(1992年至1999年)容量提升:FPGA容量不断上涨,芯片面积逐渐增大,为架构穿心提供空间,复杂功能可以实现。布线问题凸显:缩着芯片复杂度增加,片上资源的互连
    Jeffreyzhang123 2024-12-27 10:26 54浏览
  •       在科技日新月异的今天,智能手机已不再仅仅是通讯工具,它更成为了我们娱乐、学习、工作的核心设备。特别是在游戏体验方面,用户对于手机的性能要求愈发严苛,追求极致流畅与沉浸感。正是基于这样的市场需求,一加品牌于2024年12月26日正式推出了其最新的游戏性能旗舰——一加 Ace 5系列,包括一加 Ace 5与一加 Ace 5 Pro两款力作。这一系列深度聚焦于性能与游戏体验,旨在为用户带来前所未有的游戏盛宴。骁龙8系旗舰平台,性能跃升新高度
    科技财经汇 2024-12-26 22:31 51浏览
  • 全球照明技术创新领航者艾迈斯欧司朗,于2024年广州国际照明展览会同期,举办【智慧之光】· 艾迈斯欧司朗-照明应用研讨会,以持续的技术创新,推动光+概念的全面落地。现场还演示了多款领先照明技术,且由资深工程师倾情解读,另有行业大咖深度洞察分享,助你开启“光的无限可能”探索之旅!精彩大咖分享引领未来照明无限遐想艾迈斯欧司朗精心准备了照明领域专业大咖的深度分享,无论是照明领域的资深从业者,还是对照明科技充满好奇的探索者,在这里,您都将大有所获。在艾迈斯欧司朗照明全球产品市场VP Geral
    艾迈斯欧司朗 2024-12-25 20:05 66浏览
  • 在谐振器(无源晶振)S&A250B测试软件中,DLD1到DLD7主要用于分析晶体在不同驱动功率下的阻抗变化。此外,还有其他DLD参数用于反映晶振的磁滞现象,以及其频率和功率特性。这些参数可以帮助工程师全面了解KOAN晶振在不同功率条件下的动态特性,从而优化其应用和性能。磁滞现象晶振的磁滞现象(Hysteresis)是指在驱动功率变化时,晶体的阻抗或频率无法立即恢复至初始状态,而表现出滞后效应。1. DLDH: Hysteresis Ratio (MaxR/MinR)在不同驱动
    koan-xtal 2024-12-26 12:41 103浏览
  • 近日,紫光展锐正式推出基于RTOS系统的旗舰产品W337,它拥有丰富特性和超低功耗,进一步壮大紫光展锐的智能穿戴产品组合,面向中高端和广阔的智能穿戴市场,提供先进的技术解决方案。  性能卓越,成就强悍RTOS穿戴芯 双核CPU架构:紫光展锐W337基于RTOS系统首创双核CPU架构,可根据系统的负载情况动态调整功耗,当系统负载较低时,降低一个或两个核心的频率和电压。由于有两个核心分担负载,每个核心的发热相对较低,进一步降低了系统整体的散热需求。双核架构更好地实现了负
    紫光展锐 2024-12-26 18:13 45浏览
  • 今年AI技术的话题不断,随着相关应用服务的陆续推出,AI的趋势已经是一个明确的趋势及方向,这也连带使得AI服务器的出货量开始加速成长。AI服务器因为有着极高的运算效能,伴随而来的即是大量的热能产生,因此散热效能便成为一个格外重要的议题。其实不只AI服务器有着散热的问题,随着Intel及AMD 的CPU规格也不断地在提升,非AI应用的服务器的散热问题也是不容小觑的潜在问题。即便如此,由于目前的液冷技术仍有许多待克服的地方,例如像是建置成本昂贵,机壳、轨道、水路、数据中心等项目都得重新设计来过,维修
    百佳泰测试实验室 2024-12-26 16:33 100浏览
  • 图森未来的“夺权之争”拉扯了这么久,是该画上句号了。大约9年前,侯晓迪、陈默、郝佳男等人共同创立了图森未来,初衷是以L4级别的无人驾驶卡车技术为全球物流运输行业赋能。此后,先后获得了5轮融资,累计融资额超过6.5亿美元,并于2021年成功在美国纳斯达克上市,成为全球自动驾驶第一股。好景不长,2023年市场屡屡传出图森未来裁员、退市的消息。今年1月份,图森未来正式宣布退市,成为了全球首个主动退市的自动驾驶公司。上市匆匆退市也匆匆,其背后深层原因在于高层的频繁变动以及企业的转型调整。最近,图森未来的
    刘旷 2024-12-27 10:23 19浏览
  • 据IDTechEx最新预计,到2034年,全球汽车舱内传感(In-Cabin Sensing,ICS)市场将超过85亿美元。若按照增长幅度来看,包含驾驶员监控系统(DMS)、乘员监控系统(OMS)、手势控制和生命体征监测等高级功能在内的舱内传感市场预计2020年到2034年将增长11倍。感光百科:ICS中的光源选择01、政策推动带来的“硬”增长作为其中的增长主力,舱内监控系统应用(包含DMS和OMS等)被推动增长的首要因素正是法规。据统计,中国、欧盟、美国、韩国、印度等主要汽车国家或地区已推出相
    艾迈斯欧司朗 2024-12-25 19:56 83浏览
  • 随着科技的飞速进步,智能家电已成为现代家庭生活中密不可分的一部分。不论是自行出动,清扫地板的扫地机器人、还是可提前准备食材清单的智能冰箱,或者是可自动调节洗衣程序的智能洗衣烘干机,这些智能家电装置正以前所未有的方式改变着我们的日常生活。除了上述提到的智能家电,还有更多你想象得到的便利装置,例如智能除湿机、空气清净机、净水器、智能风扇、语音助理及智能灯具等等。这些装置不仅为现代人的居家生活中带来了许多便利,让我们能够更轻松地管理家务,还可进一步提升生活质量,节省宝贵的时间和能源。正所谓「科技始终来
    百佳泰测试实验室 2024-12-26 16:37 34浏览
  • 在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
    Jeffreyzhang123 2024-12-27 11:53 43浏览
  • 本文介绍瑞芯微开发板/主板Android系统APK签名文件使用方法,触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,各类接口一应俱全,帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。系统签名文件生成APK系统签名文件,具体可参考此文章方法RK3588主板/开发板Android12系统APK签名文件生成方法,干货满满使用方法第一步,修改APK工程文件app/src/build.gradle,并添加以下内容: android {     na
    Industio_触觉智能 2024-12-26 09:20 81浏览
  • 起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
    Jeffreyzhang123 2024-12-27 10:41 45浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-26 09:19 112浏览
  • 施密特触发器光耦施密特触发器光耦(Schmitt Trigger Optocoupler)是一种将光耦和施密特触发器电路相结合的电子元件。它不仅具备光耦的电气隔离功能,还具备施密特触发器的噪声抑制和信号整形能力。施密特触发器光耦的详细结构LED部分:LED是由半导体材料制成的,通常封装在一个透明的塑料或玻璃外壳中。其主要功能是在输入端电流流过时产生光信号。光接收器部分:光接收器通常是一个光敏晶体管或光敏二极管,其基区(或PN结)对光信号敏感。当接收到来自LED的光信号时,光接收器产生一个与光强度
    晶台光耦 2024-12-26 17:19 38浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦