[技術文章]耗尽型功率MOSFET:被忽略的MOS产品

作者:Littelfuse公司产品工程师Aalok Bhatt;产品总监José Padilla;产品经理Raymon Zhou


功率MOSFET最常用于开关型应用中,发挥着开关的作用。然而,在诸如SMPS的启动电路、浪涌和高压保护、防反接保护或固态继电器等应用中,当栅极到源极的电压VGS为零时,功率MOSFET需要作为常“开”开关运行。在VGS=0V时作为常 "开 "开关的功率MOSFET,称为耗尽型(depletion-mode ) MOSFET。

增强型和耗尽型MOSFET之间的区别


第一个主要的区别是增强型(EM)和耗尽型(DM)器件的电路图示,如图1所示。EM器件在VGS=0V时没有导通,而在达到栅极到源极阈值电压VGS(th)开始导通。相反地,DM器件的通道在VGS=0V时是完全导通的。对于EM器件,当VGS>VGS(th)时,漏极电流ID增加。对于DM器件,则当VGS>0时电流增加;EM器件在VGS

图1:增强型和耗尽型MOSFET之间的区别


在某些应用中,增强型EM器件不能取代耗尽型DM器件,因为它们在零栅极电压VGS截止。此外,在一些涉及耗尽型MOSFET器件的应用中,根本不需要使用栅极驱动电路,因为栅极从应用电路中获得了偏压。借助耗尽型MOSFET的线性型工作能力,可以节省整体系统成本,同时减低复杂性并提高可靠性。

耗尽型MOSFET产品


Littelfuse耗尽型功率MOSFET采用垂直双扩散MOSFET(DMOSFET)的结构。所有这些器件都能工作在线性型下,这要归功于扩展的正向偏置安全工作区(FBSOA),因而在终端应用中具有较高的可靠性[1][2]。Littelfuse耗尽型MOSFET有Depletion D、Depletion D2和Depletion CPC产品系列[4],图2概述多样化的耗尽型(DM)产品组合。


图2:Littelfuse耗尽型MOSFET产品组合


与EM器件不同,DM器件并不用于高频应用。通常,除了线性MOSFET之外,EM器件不能够工作在线性型[1];然而,所有D系列和D2系列DM器件均具有扩展的FBSOA,因此能够工作在线性型。目前正在开发额定电压为2500V的高压耗尽型MOSFET产品。高压(HV)测试设备、电源、斜坡信号发生器、绝缘电阻测试设备或高压输电系统的辅助电源等应用,都需要使用这类耗尽型MOSFET器件。图3说明Littelfuse耗尽型MOSFET在市场上占据领导地位。


图3:Littelfuse耗尽型MOSFET具有市场领导地位

耗尽型功率MOSFET的应用

以下是独特适合耗尽型MOSFET产品的应用[3]。


1. 开关型电源的启动电路 - SMPS

SMPS传统启动电路方法是通过功率电阻和齐纳二极管。在这种方法中,即使在启动阶段之后,功率电阻也会持续消耗功率,这导致PCB上的热量过高,工作效率低下,以及SMPS输入工作电压范围受到限制。可以采用基于耗尽型MOSFET的方法来替代,如图4所示。耗尽型MOSFET提供PWM IC所需的初始电流以启动运作。在启动阶段之后,辅助绕组将生成PWM IC所需的功率。在正常运行期间,耗尽型MOSFET由于静态电流较低,因而所消耗的功率最少。这种方法的主要优势是在启动序列操作之后的功耗理论值为零,从而提高了整体效率。此外,所占用的PCB面积更小,并可实现宽泛的直流输入电压范围,这对许多应用(如太阳能逆变器)是至关重要的。


图4:用于SMPS启动电路的耗尽型MOSFET


2. 线性电压调节器的浪涌保护

线性电压调节器为小型模拟电路、CMOS IC或其他任何需要低电流的负载提供电源,其输入电压Vin直接来自母线电压。这可能出现很大的电压变化,包括由于应用环境造成的电压尖峰。如图5所示,耗尽型MOSFET可用于在线性电压调节器电路中实施浪涌保护。这种MOSFET采用源极跟随器配置连接。源极上的电压将跟随栅极上的电压变化。耗尽型MOSFET的导通仅仅取决于栅极电压,而与漏极电压无关。这种配置用于减少电压瞬变,直至达到器件额定电压VDS耐受能力。基于耗尽型MOSFET解决方案的优点是具有宽泛的直流工作电压范围Vin,以及借助MOSFET低静态电流而实现的最小功耗。这种保护功能可用于通信应用,以减少浪涌造成的瞬变影响。也可用于汽车和航空电子应用,以减少由电感负载引起的瞬变。


图5:使用耗尽型MOSFET的浪涌保护电路


3. 恒流源

耗尽型MOSFET可用于实现恒流源,如图6所示。它根据电阻R值和栅极截止电压VGS(off)而向负载提供恒定的电流。因此,电流ID与电压Vin无关。这个电流相当于IDVGSoffR。这样的电流源可以在LED阵列驱动器、涓流充电电路中使用,以维持监控系统的电池电量,或者以恒流方式为电容器充电。

图6:使用耗尽型MOSFET的恒流源


4. 高压斜坡信号发生器

自动测试设备等应用需要在输出电压和时间之间保持线性关系的高压斜坡。可以配置耗尽型MOSFET来设计高压斜坡发生器,如图7所示。恒流源通过电阻R1给电容C充电,并产生电压斜坡,即电容上的Vout。可以通过控制信号开启线性MOSFET,以重置斜坡电压,可通过电阻R2将电容器放电至零。电阻R2用于限制线性MOSFET的放电电流,使其在SOA额定范围内工作。


图7:使用耗尽型MOSFET的高压斜坡发生器


5. 高压保护电路

耗尽型MOSFET可用于保护测量仪器,防止因测量探头意外连接到高压Vmeas而造成的破坏性高压(图8)。在这种情况下,采用背对背配置的MOSFET S1和S2将通过限制电流来保护仪器。这将对探头上的正电压和负电压提供保护。这种电路可用于台式或手持式仪器。


图8:使用耗尽型MOSFET的高压保护电路


6. 固态继电器

如图9所示,耗尽型MOSFET在实现以固态继电器(SSR)取代机械继电器(EMR)的负载开关方面表现出色。固态继电器的主要优点是不受磁场影响,由于没有机械触点而具有更高的可靠性,并且节省了PCB占用空间。医疗设备、工业自动化、测量和测试设备以及消费电子等应用都广泛使用固态继电器。

图9:使用耗尽型MOSFET的固态继电器

结论


要求在栅极电压为零时有电流的应用,均可以使用耗尽型MOSFET。尽管这些器件有许多实际应用,但几乎被人们忽略。Littelfuse提供最广泛的从60V到1700V电压范围的产品系列,我们是唯一一家提供大电流耗尽型MOSFET器件的制造商。本文所讲述的应用,将帮助设计人员在各种工业应用中选择使用这些器件以提高效率并增加系统的可靠性。


力特奥维斯Littelfuse 力特于1927年于美国伊利诺伊州芝加哥正式成立。如今,力特已经在行业中建立了广泛和全面的电路保护产品系列和产品线,是世界领先的电路元器件供应商及电路保护品牌。
评论
  • 引言工程师作为推动科技进步和社会发展的核心力量,在各个领域发挥着关键作用。为深入了解工程师的职场现状,本次调研涵盖了不同行业、不同经验水平的工程师群体,通过问卷调查、访谈等方式,收集了大量一手数据,旨在全面呈现工程师的职场生态。1. 工程师群体基本信息行业分布:调研结果显示,工程师群体广泛分布于多个行业,其中制造业占比最高,达到 90%,其次是信息技术、电子通信、能源等行业。不同行业的工程师在工作内容、技术要求和职业发展路径上存在一定差异。年龄与经验:工程师群体以中青年为主,30 - 45 岁年
    Jeffreyzhang123 2024-12-27 17:39 182浏览
  •       在科技日新月异的今天,智能手机已不再仅仅是通讯工具,它更成为了我们娱乐、学习、工作的核心设备。特别是在游戏体验方面,用户对于手机的性能要求愈发严苛,追求极致流畅与沉浸感。正是基于这样的市场需求,一加品牌于2024年12月26日正式推出了其最新的游戏性能旗舰——一加 Ace 5系列,包括一加 Ace 5与一加 Ace 5 Pro两款力作。这一系列深度聚焦于性能与游戏体验,旨在为用户带来前所未有的游戏盛宴。骁龙8系旗舰平台,性能跃升新高度
    科技财经汇 2024-12-26 22:31 88浏览
  • 在当今科技飞速发展的时代,工业电子作为现代制造业的中流砥柱,正以前所未有的速度推动着各个行业的变革与进步。从汽车制造到航空航天,从智能家居到工业自动化,工业电子的身影无处不在,为我们的生活和生产带来了巨大的改变。工业电子的崛起与发展工业电子的发展历程可谓是一部波澜壮阔的科技进化史。追溯到上世纪中叶,电子技术开始逐渐应用于工业领域,最初主要是简单的电子控制装置,用于提高生产过程的自动化程度。随着半导体技术、计算机技术和通信技术的不断突破,工业电子迎来了爆发式的增长。集成电路的发明使得电子设备的体积
    Jeffreyzhang123 2024-12-27 15:40 148浏览
  • 采购与分销是企业运营中至关重要的环节,直接影响到企业的成本控制、客户满意度和市场竞争力。以下从多个方面介绍如何优化采购与分销:采购环节优化供应商管理供应商评估与选择:建立一套全面、科学的供应商评估体系,除了考虑价格因素,还要综合评估供应商的产品质量、交货期、信誉、研发能力、售后服务等。通过多维度评估,选择那些能够提供优质产品和服务,且与企业战略目标相契合的供应商。建立长期合作关系:与优质供应商建立长期稳定的合作关系,这种合作模式可以带来诸多好处。双方可以在信任的基础上进行深度沟通与协作,共同开展
    Jeffreyzhang123 2024-12-27 17:43 159浏览
  • 一、前言 回首2024,对于我而言,是充满挑战与收获的一年。在这一年里,我积极参与了论坛的众多活动,不仅拓宽了我的认知边界(有些东西不是你做不到,而是你想不到),还让我在实践中收获了宝贵的经验和。同时,多种多样的论坛活动让我们全方面的接受新东西,连接新知识,多种类型的的活动交织了你我的2024。在这里说一说对过去一年的活动经历,进行一次年终总结,并谈谈我的收获和感受,以及对2025年的展望。二、活动足迹(一)快速体验:机智云Gokit2.0开发板初体验 机智云Gokit2.0开发板的体验活动让大
    无言的朝圣 2024-12-27 14:50 105浏览
  • 在科技飞速发展的今天,医疗电子作为一个融合了医学与电子技术的交叉领域,正以前所未有的速度改变着我们的医疗模式和健康生活。它宛如一颗璀璨的明珠,在医疗领域绽放出耀眼的光芒,为人类的健康福祉带来了诸多惊喜与变革。医疗电子的神奇应用医疗电子的应用范围极为广泛,深入到医疗的各个环节。在诊断方面,各种先进的医学成像设备堪称医生的 “火眼金睛”。X 光、CT、MRI 等成像技术,能够清晰地呈现人体内部的结构和病变情况,帮助医生准确地发现疾病。以 CT 为例,它通过对人体进行断层扫描,能够提供比传统 X 光更
    Jeffreyzhang123 2024-12-27 15:46 151浏览
  • 起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
    Jeffreyzhang123 2024-12-27 10:41 89浏览
  • 一、引言无人机,作为近年来迅速崛起的新兴技术产物,正以前所未有的速度改变着众多行业的运作模式,从民用领域的航拍、物流,到工业领域的测绘、巡检,再到军事领域的侦察、打击等,无人机的身影无处不在。为了深入了解无人机的现状,本次调研综合了市场数据、行业报告、用户反馈等多方面信息,全面剖析无人机的发展态势。二、市场规模与增长趋势随着技术的不断进步和成本的逐渐降低,无人机市场呈现出爆发式增长。近年来,全球无人机市场规模持续扩大,预计在未来几年内仍将保持较高的增长率。从应用领域来看,消费级无人机市场依然占据
    Jeffreyzhang123 2024-12-27 17:29 235浏览
  • 在当今这个数字化的时代,电子设备无处不在,从我们手中的智能手机、随身携带的笔记本电脑,到复杂的工业控制系统、先进的医疗设备,它们的正常运行都离不开一个关键的 “幕后英雄”—— 印刷电路板(Printed Circuit Board,简称 PCB)。PCB 作为电子设备中不可或缺的重要部件,默默地承载着电子元件之间的连接与信号传输,是整个电子世界的基石。揭开 PCB 的神秘面纱PCB,简单来说,就是一块由绝缘材料制成的板子,上面通过印刷、蚀刻等工艺形成了导电线路和焊盘,用于固定和连接各种电子元件。
    Jeffreyzhang123 2024-12-27 17:21 144浏览
  • 发明阶段(20世纪80年代至90年代)起源:当时ASIC设计成本高,周期长,流片失败率高,业界需要一种通用的半导体器件进行流片前测试和验证,可编程逻辑器件就此产生。诞生:1980年,Xilinx公司成立。1985年,Ross Freeman制造了第一片PFGA芯片XC2064,采用4输入,1输出的LUT和FF结合的基本逻辑单元。发展阶段(1992年至1999年)容量提升:FPGA容量不断上涨,芯片面积逐渐增大,为架构穿心提供空间,复杂功能可以实现。布线问题凸显:缩着芯片复杂度增加,片上资源的互连
    Jeffreyzhang123 2024-12-27 10:26 111浏览
  • 从教师的角度来看,麻省理工学院开除因学术造假的学生,这一决定是合理且必要的。首先,学术诚信是学术研究的基石。在学术界,真实性和原创性是至关重要的。学术造假不仅破坏了学术研究的公正性和准确性,还损害了学术领域的整体声誉。因此,对于任何形式的学术不端行为,包括伪造数据、抄袭等,学校都应采取严厉措施,以维护学术诚信。其次,学校对学生具有管理权,包括对学生的处分权。按照相关规定,学校有权对违纪学生进行警告、严重警告、记过、留校察看、勒令退学、开除学籍等处分。开除学籍是一种严厉的处分,通常适用于严重违反学
    curton 2024-12-28 21:49 101浏览
  • 在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
    Jeffreyzhang123 2024-12-27 11:53 149浏览
  • 在当今这个科技飞速发展的时代,物联网(IoT)已经不再是一个陌生的概念,它正以一种前所未有的速度改变着我们的生活和工作方式,像一股无形的力量,将世界紧密地连接在一起,引领我们步入一个全新的智能时代。物联网是什么简单来说,物联网就是通过感知设备、网络传输、数据处理等技术手段,实现物与物、人与物之间的互联互通和智能化管理。想象一下,你的家里所有的电器都能 “听懂” 你的指令,根据你的习惯自动调节;工厂里的设备能够实时监测自身状态,提前预警故障;城市的交通系统可以根据实时路况自动优化信号灯,减少拥堵…
    Jeffreyzhang123 2024-12-27 17:18 131浏览
  • 图森未来的“夺权之争”拉扯了这么久,是该画上句号了。大约9年前,侯晓迪、陈默、郝佳男等人共同创立了图森未来,初衷是以L4级别的无人驾驶卡车技术为全球物流运输行业赋能。此后,先后获得了5轮融资,累计融资额超过6.5亿美元,并于2021年成功在美国纳斯达克上市,成为全球自动驾驶第一股。好景不长,2023年市场屡屡传出图森未来裁员、退市的消息。今年1月份,图森未来正式宣布退市,成为了全球首个主动退市的自动驾驶公司。上市匆匆退市也匆匆,其背后深层原因在于高层的频繁变动以及企业的转型调整。最近,图森未来的
    刘旷 2024-12-27 10:23 71浏览
  • 在当今竞争激烈的商业世界中,供应链管理已成为企业生存与发展的核心竞争力之一。它就像一条无形的纽带,将供应商、制造商、分销商、零售商直至最终消费者紧密相连,确保产品和服务能够高效、顺畅地流转。今天,就让我们一同深入探索供应链管理的奥秘。供应链管理是什么简单来说,供应链管理是对从原材料采购、生产制造、产品配送直至销售给最终用户这一整个过程中,涉及的物流、信息流和资金流进行计划、协调、控制和优化的管理活动。它不仅仅是对各个环节的简单串联,更是一种通过整合资源、优化流程,实现整体效益最大化的管理理念和方
    Jeffreyzhang123 2024-12-27 17:27 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦